• Title/Summary/Keyword: square root quadratic term

Search Result 2, Processing Time 0.015 seconds

SQUARE QUADRATIC PROXIMAL METHOD FOR NONLINEAR COMPLIMENTARITY PROBLEMS

  • Bnouhachem, Abdellah;Ou-yassine, Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.671-684
    • /
    • 2019
  • In this paper, we propose a new interior point method for solving nonlinear complementarity problems. In this method, we use a new profitable searching direction and instead of using the logarithmic quadratic term, we use a square root quadratic term. We prove the global convergence of the proposed method under the assumption that F is monotone. Some preliminary computational results are given to illustrate the efficiency of the proposed method.

Two Cubic Polynomials Selection for the Number Field Sieve (Number Field Sieve에서의 두 삼차 다항식 선택)

  • Jo, Gooc-Hwa;Koo, Nam-Hun;Kwon, Soon-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10C
    • /
    • pp.614-620
    • /
    • 2011
  • RSA, the most commonly used public-key cryptosystem, is based on the difficulty of factoring very large integers. The fastest known factoring algorithm is the Number Field Sieve(NFS). NFS first chooses two polynomials having common root modulo N and consists of the following four major steps; 1. Polynomial Selection 2. Sieving 3. Matrix 4. Square Root, of which the most time consuming step is the Sieving step. However, in recent years, the importance of the Polynomial Selection step has been studied widely, because one can save a lot of time and memory in sieving and matrix step if one chooses optimal polynomial for NFS. One of the ideal ways of choosing sieving polynomial is to choose two polynomials with same degree. Montgomery proposed the method of selecting two (nonlinear) quadratic sieving polynomials. We proposed two cubic polynomials using 5-term geometric progression.