• 제목/요약/키워드: square root model

검색결과 1,029건 처리시간 0.022초

적콜라비 새싹채소 종자에서 분리한 Escherichia coli strain RC-4-D의 생장예측모델 (Mathematical modeling of growth of Escherichia coli strain RC-4-D isolated from red kohlrabi sprout seeds)

  • 최수연;류상돈;박병용;김세리;김현주;이승돈;김원일
    • 한국식품저장유통학회지
    • /
    • 제24권6호
    • /
    • pp.778-785
    • /
    • 2017
  • 본 연구는 시중 유통되고 있는 새싹채소 재배용 적콜라비 종자에서 분리한 E. coli strain RC-4-D의 생장예측모델을 개발하기 위해 수행되었다. 각 온도조건(10, 15, 20, 25, $30^{\circ}C$) 별로 적콜라비 중 E. coli strain RC-4-D 밀도 변화를 조사하였고 Baranyi model을 1차 생장예측모델로 이용하였고 각 온도별로 최대생장률(${\mu}max$)과 $10^{\circ}C$를 제외한 유도기(LPD) 값을 도출하였다. E. coli strain RC-4-D의 최대생장률에 대한 2차 생장예측모델로써 suboptimal Ratkowsky square-root, suboptimal Huang square-root, suboptimal Arrhenius-type 세 종류의 모델을 비교하였다. 모델 적합성 검정 결과, suboptimal Huang square-root 모델이 정확도가 가장 높고 suboptimal Ratkowsky square-root 모델이 편차가 가장 적은 것으로 나타났다. 종합적으로, RMSE가 0.100, $A_f$가 1.255, $B_f$가 0.999인 suboptimal Ratkowsky square-root 모델이 온도의 영향을 설명하는 가장 적합한 2차 생장예측 모델인 것으로 나타났다. 본 연구에서 개발한 모델은 적콜라비 새싹채소 생산에 있어서 E. coli의 생장을 예측하고 미생물 위해성평가를 수행하는데 활용될 것으로 기대된다.

센서리스 영구자석 동기전동기의 상태 추정을 위한 병렬 축소 차수 제곱근 무향 칼만 필터 (Parallel Reduced-Order Square-Root Unscented Kalman Filter for State Estimation of Sensorless Permanent-Magnet Synchronous Motor)

  • 문철;권영안
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.1019-1025
    • /
    • 2016
  • This paper proposes a parallel reduced-order square-root unscented Kalman filter for state estimation of a sensorless permanent-magnet synchronous motor. The appearance of an unscented Kalman filter is caused by the linearization process error between a real system and classical Kalman model. The unscented transformation can make a more accurate Kalman model. However, the complexity is its main drawback. This paper investigates the design and implementation of the proposed filter with Potter and Carlson square-root form. The proposed parallel reduced-order square-root unscented Kalman filter reduces memory and code size, and improves numerical computation. And the performance is not significantly different from the unscented Kalman filter. The experimentation is performed for the verification of the proposed filter.

수학적 정량평가모델을 이용한 Vibrio parahaemolyticus의 성장 예측모델의 개발 (Development of Predictive Growth Model of Vibrio parahaemolyticus Using Mathematical Quantitative Model)

  • 문성양;장태은;우건조;신일식
    • 한국식품과학회지
    • /
    • 제36권2호
    • /
    • pp.349-354
    • /
    • 2004
  • 수산식품에서 문제가 되는 식중독 균인 V. parahaemolyticus를 대상으로 온도, pH 및 초기균수에 따른 균의 성장 실험 결과를 데이터베이스화하여 이를 바탕으로 균의 성장을 정량적으로 평가할 수 있는 수학적 모델을 개발하였다. $1.0{\times}10^{2},\;1.0{\times}10^{3},\;1.0{\times}10^{4}\;CFU/mL$의 각 초기균수 조건에서 실험치와 예측치의 상관계수는 각각 0.966, 0.979, 0.965으로 나타났다. 또한, 초기균수를 고려하지 않은 모델식은 상관계수가 0.966으로 다음과 같이 나타났다. Polynomial model: $$k=1.10{\cdot}\exp(-0.5(((T-34.14)/9.09)^{2}+((pH-6.59)/4.68)^{2}))$$ 균의 증식 지표치인 최대증식속도상수 k는 온도에 지배적인 영향을 받았으며, pH 및 초기균수에 따른 유의적인 차이는 없었으므로 (P>0.05), k와 온도와의 관계식인 square root model로 나타내었다. Square root model: $${\sqrt{k}\;0.06(T-9.55)[1-\exp(0.07(T-49.98))]$$ V. parahaemolyticus의 경우, square root model에 의한 실험치와 예측치의 상관계수는 0.977로 polynomial model보다 높은 적용성을 나타내었다.

수학적 정량평가모델을 이용한 Listeria monocytogenes의 성장 예측모델의 개발 (Development of Predictive Growth Model of Listeria monocytogenes Using Mathematical Quantitative Assessment Model)

  • 문성양;우건조;신일식
    • 한국식품과학회지
    • /
    • 제37권2호
    • /
    • pp.194-198
    • /
    • 2005
  • 게맛살의 HACCP system에 있어서 critical control point중의 하나인 L. monocytogenes가 오염된 제품에서 균의 성장변화를 정량적으로 예측할 수 있는 수학적 모델의 개발을 위한 기초 자료를 제공하고자 게맛살 성분조성을 고려한 modified imitation crab(MIC) broth에서 온도와 초기균수에 따른 L. monocytogenes의 성장 실험 결과를 데이터베이스화하여 이를 바탕으로 균의 성장을 정량적으로 평가할 수 있는 수학적 모델을 개발하였다. 균의 증식 지표인 최대증식속도상수(k), 유도기(LT), 세대시간(GT)은 온도에 지배적인 영향을 받았으며, 초기균수에 따른 유의적인 차이는 없었다(p>0.05). 최대증식속도상수(k)와 온도 및 초기균수의 상관관계를 나타내는 수학적 정량평가모델인 polynomial model과 square root model을 이용하여 L. monocytogenes 성장을 정량적으로 예측할 수 있는 모델인 $polynomial\;mode(k=0.71{\cdot}exp(-0.5(\;((T-36.05)/11.84)^{2}+((A_{0}+8.12)/21.59)^{2})))$과 square root model($\sqrt{k}$ =0.02(T-(-3.42)) [1-exp(0.36(T-44.51))])을 개발하였으며 실험치와 예측치의 상관관계는 각각 0.92. 0.95로 polynomial model보다 square root model 예측치가 실험치와 상관관계가 더 높은 것으로 나타났다.

수학적 정량평가모델을 이용한 게맛살 부패균의 성장 예측모델의 개발 (Development of Predictive Growth Model of Imitation Crab Sticks Putrefactive Bacteria Using Mathematical Quantitative Assessment Model)

  • 문성양;백장미;신일식
    • 한국식품과학회지
    • /
    • 제37권6호
    • /
    • pp.1012-1017
    • /
    • 2005
  • 게맛살로부터 분리한 주요 부패세균은 내열성 포자를 형성하는 Bacillus subtilis와 Bacillus licheniformis로 동정되었다. 게맛살의 제조 공정상 가열 처리 과정에서 B. subtilis와 B. Licheniformis 등 내열성 포자를 형성하는 균을 완전히 사멸시키기는 어려우며, 살아남은 포자는 유통과정 중, 적정 온도와 시간이 경과함에 따라, 영향 세포로 발아하여 게맛살의 부패에 영향을 미친다. 이러한 부패세균의 증식에 있어서 초기균수와 온도의 영향을 조사한 결과, 초기균수에 따른 최대증식속도상수(k)와 유도기(LT), 세대시간(GT)은 유의적인 차이가 없었으며, 온도의 영향이 지배적인 것으로 나타났다. 또한 본 실험에서 유도기(LT)와 온도의 관계는 $L(hr)=2.5219e^{-0.2467{\cdot}T}$의 관계가 성립하며, square root model과 polynomial model을 이용, 온도와 초기균수에 대한 최대증식속도상수(k)를 정량화한 정량평가모델을 개발하였으며, 그 식은 다음과 같다. $$Square\;root\;model:\;{\sqrt{k}}=0.0267\;(T-3.5089)$$ $$Polynomial model:\;k=-0.2160+0.0241T-0.01999A_0$$ 온도와 초기균수에 대한 최대증식속도상수(k)의 정량평가모델로부터 특정온도와 초기 균수에서 최대증식속도상수(k)를 계산할 수 있으며, 계산된 최대증식속도상수(k)를 균의 기본 증식 모델인 Gomperz model에 적용하여 균의 성장을 예측할 수 있었다.

작물모형 평가를 위한 통계적 방법들에 대한 비교 (Comparison of Statistic Methods for Evaluating Crop Model Performance)

  • 김준환;이충근;손지영;최경진;윤영환
    • 한국농림기상학회지
    • /
    • 제14권4호
    • /
    • pp.269-276
    • /
    • 2012
  • 작물모형 평가에 사용되거나 사용할 수 있는 9가지 지표를 소개하였으며 이들의 특징은 다음과 같다. efficiency of model (EF)와 index of agreement (d)은 dimension이 없고 관측수(n)에 의존적이지 않았으며, dimension에 대해서만 자유로운 것은 relative root mean square error (RRMSE), bias factor (Bf)와 accuracy factor (Af)이다. Root mean sqruar, mean error, mean absolute error들은 관측수와 dimension에 영향을 받기 때문에 판단 시 주의가 필요하다. 따라서 이들의 특징을 파악하여 목적에 맞게 모형의 성능을 파악하여야 한다.

Development of a Predictive Mathematical Model for the Growth Kinetics of Listeria monocytogenes in Sesame Leaves

  • Park, Shin-Young;Choi, Jin-Won;Chung, Duck-Hwa;Kim, Min-Gon;Lee, Kyu-Ho;Kim, Keun-Sung;Bahk, Gyung-Jin;Bae, Dong-Ho;Park, Sang-Kyu;Kim, Kwang-Yup;Kim, Cheorl-Ho;Ha, Sang-Do
    • Food Science and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.238-242
    • /
    • 2007
  • Square root models were developed for predicting the kinetics of growth of Listeria monocytogenes in sesame leaves as a function of temperature (4, 10, or $25^{\circ}C$). At these storage temperatures, the primary growth curves fit well ($R^2=0.898$ to 0.980) to a Gompertz equation to obtain lag time (LT) and specific growth rate (SGR). The square root models for natural logarithm transformations of the LT and SGR as a function of temperature were obtained by SAS's regression analysis. As storage temperature ($4-25^{\circ}C$) decreased, LT increased and SGR decreased, respectively. Square root models were identified as appropriate secondary models for LT and SGR on the basis of most statistical indices such as coefficient determination ($R^2=0.961$ for LT, 0.988 for SGR), mean square error (MSE=0.l97 for LT, 0.005 for SGR), and accuracy factor ($A_f=1.356$ for LT, 1.251 for SGR) although the model for LT was partially not appropriate as a secondary model due to the high value of bias factor ($B_f=1.572$). In general, our secondary model supported predictions of the effects of temperature on both LT and SGR for L. monocytogenes in sesame leaves.

벡터자기회귀모형에 의한 금리스프레드의 예측 (Prediction of the interest spread using VAR model)

  • 김준홍;진달래;이지선;김수지;손영숙
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1093-1102
    • /
    • 2012
  • 본 연구에서는 다변량시계열모형인 VAR (vector autoregressive regression)모형에 의하여 금리 스프레드의 시계열예측을 수행하였다. 국내외 거시경제변수들 중에서 교차상관분석 및 그랜져인과 검정을 통하여 상호간에 설명력이 있는 변수들을 추출하여 VAR모형의 시계열변수로 사용하였다. 마지막 12개월의 예측치에 대한 MAPE (mean absolute percentage error)와 RMSE (root mean square error)에 근거하여 모형의 예측력을 단일변량 시계열모형인 AR (autoregressive regression) 모형과 비교하였다.

Performance Comparison Analysis of Artificial Intelligence Models for Estimating Remaining Capacity of Lithium-Ion Batteries

  • Kyu-Ha Kim;Byeong-Soo Jung;Sang-Hyun Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권3호
    • /
    • pp.310-314
    • /
    • 2023
  • The purpose of this study is to predict the remaining capacity of lithium-ion batteries and evaluate their performance using five artificial intelligence models, including linear regression analysis, decision tree, random forest, neural network, and ensemble model. We is in the study, measured Excel data from the CS2 lithium-ion battery was used, and the prediction accuracy of the model was measured using evaluation indicators such as mean square error, mean absolute error, coefficient of determination, and root mean square error. As a result of this study, the Root Mean Square Error(RMSE) of the linear regression model was 0.045, the decision tree model was 0.038, the random forest model was 0.034, the neural network model was 0.032, and the ensemble model was 0.030. The ensemble model had the best prediction performance, with the neural network model taking second place. The decision tree model and random forest model also performed quite well, and the linear regression model showed poor prediction performance compared to other models. Therefore, through this study, ensemble models and neural network models are most suitable for predicting the remaining capacity of lithium-ion batteries, and decision tree and random forest models also showed good performance. Linear regression models showed relatively poor predictive performance. Therefore, it was concluded that it is appropriate to prioritize ensemble models and neural network models in order to improve the efficiency of battery management and energy systems.