• Title/Summary/Keyword: square root function

Search Result 250, Processing Time 0.025 seconds

Pressure Losses in PVC Pipe and Fittings (PVC 배관부품의 마찰 손실)

  • Cho, Sung-Hwan;Choi, Jin-Hee
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.4
    • /
    • pp.209-214
    • /
    • 1984
  • Friction factors and equivalent sand roughness of PVC pipe fittings have been studied by experiments in the Reynolds number range of $2,000\~70,000$. PVC pipe fittings studied are straight pipes, $90^{\circ}$ elbows and tees with 15, 25, and 40mm in norminal diameter, all manufactured in Korea with KS mark approval. Equivalent relative roughness of PVC pipes obtained lies between smooth pipe and 0.002. The study shows that equivalent sand roughness of PVC pipes increasses in proportion of the square root of pipe diameter , and can be approximately abtained by multiplying 4 to the root mean square value measured by metal surface roughness tester. Loss coefficient of PVC $90^{\circ}$ elbows decreases slowly with increasing Reynolds number. Loss coeffiicent of tees is a function of ratio of flow rates and Reynolds number.

  • PDF

A Modulation and Channel State Estimation Algorithm Using the Received Signal Analysis in the Blind Channel (블라인드 채널에서 수신 신호 분석 기법을 사용한 변조 및 채널 상태 추정 알고리즘)

  • Cho, Minhwan;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1406-1409
    • /
    • 2016
  • In this paper, we propose the heuristic signal grouping algorithm to estimate channel state value over full blind communication situation which means that there is no information about the modulation scheme and the channel state information between the transmitter and the receiver. Hereafter, using the constellation rotation method and the probability density function(pdf) the modulation scheme is determined to perform automatic modulation classification(AMC). Furthermore, the modulation type and a channel state value estimation capability is evaluated by comparing the proposed scheme with other conventional techniques from the simulation results in terms of the symbol error rate(SER) and the root mean square error (RMSE).

Mean estimation of small areas using penalized spline mixed-model under informative sampling

  • Chytrasari, Angela N.R.;Kartiko, Sri Haryatmi;Danardono, Danardono
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.349-363
    • /
    • 2020
  • Penalized spline is a suitable nonparametric approach in estimating mean model in small area. However, application of the approach in informative sampling in a published article is uncommon. We propose a semiparametric mixed-model using penalized spline under informative sampling to estimate mean of small area. The response variable is explained in terms of mean model, informative sample effect, area random effect and unit error. We approach the mean model by penalized spline and utilize a penalized spline function of the inclusion probability to account for the informative sample effect. We determine the best and unbiased estimators for coefficient model and derive the restricted maximum likelihood estimators for the variance components. A simulation study shows a decrease in the average absolute bias produced by the proposed model. A decrease in the root mean square error also occurred except in some quadratic cases. The use of linear and quadratic penalized spline to approach the function of the inclusion probability provides no significant difference distribution of root mean square error, except for few smaller samples.

Sensitivity Analysis for Operation a Reservoir System to Hydrologic Forecast Accuracy (수문학적 예측의 정확도에 따른 저수지 시스템 운영의 민감도 분석)

  • Kim, Yeong-O
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.855-862
    • /
    • 1998
  • This paper investigates the impact of the forecast error on performance of a reservoir system for hydropower production. Forecast error is measured as th Root Mean Square Error (RMSE) and parametrically varied within a Generalized Maintenance Of Variance Extension (GMOVE) procedure. A set of transition probabilities are calculated as a function of the RMSE of the GMOVE procedure and then incorporated into a Bayesian Stochastic Dynamic Programming model which derives monthly operating policies and assesses their performance. As a case study, the proposed methodology is applied to the Skagit Hydropower System (SHS) in Washington state. The results show that the system performance is a nonlinear function of RMSE and therefor suggested that continued improvements in the current forecast accuracy correspond to gradually greater increase in performance of the SHS.

  • PDF

A Calculation Method of Source Level of Underwater Transient Noise by Frequency Band (주파수 대역별 수중 순간소음 음원준위 산출 기법)

  • Choi, Jae-Yong;Oh, Jun-Seok;Lee, Phil-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.528-533
    • /
    • 2010
  • This paper describes a calculation method of source level of a ship transient noise, which is one of the important elements for the ship detection. Aim of transient noise measurements is to evaluate of acoustic energy due to singular occurrence, which is therefore defined as non-periodic and short termed events like an attack periscope, a rudder and a torpedo door. In generally, in the case of randomly spaced impulse, the spectrum becomes a broadband random noise with no distinctive pattern. Therefore, frequency analysis is not particularly revealing for type of signal. In the paper, it is performed in time domain to analyze a transient noise. However, a source level of transient noise is required an investigation for multiple frequency band. So, in order to calculate a source level of transient noise, a design of exponential weighting function, convolution, band pass filtering, peak detection, root mean square, and parameter compensation are applied. The effectiveness of this calculation scheme is studied through computer simulations and a sea test. Furthermore, an application of the method is applied in a real case.

Classification of algae in watersheds using elastic shape

  • Tae-Young Heo;Jaehoon Kim;Min Ho Cho
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.309-322
    • /
    • 2024
  • Identifying algae in water is important for managing algal blooms which have great impact on drinking water supply systems. There have been various microscopic approaches developed for algae classification. Many of them are based on the morphological features of algae. However, there have seldom been mathematical frameworks for comparing the shape of algae, represented as a planar continuous curve obtained from an image. In this work, we describe a recent framework for computing shape distance between two different algae based on the elastic metric and a novel functional representation called the square root velocity function (SRVF). We further introduce statistical procedures for multiple shapes of algae including computing the sample mean, the sample covariance, and performing the principal component analysis (PCA). Based on the shape distance, we classify six algal species in watersheds experiencing algal blooms, including three cyanobacteria (Microcystis, Oscillatoria, and Anabaena), two diatoms (Fragilaria and Synedra), and one green algae (Pediastrum). We provide and compare the classification performance of various distance-based and model-based methods. We additionally compare elastic shape distance to non-elastic distance using the nearest neighbor classifiers.

THE LIMITING SPECTRAL DISTRIBUTION FUNCTION OF LARGE DIMENSIONAL RANDOM MATERICES OF SAMPLE COVARIANCE TYPE

  • Choi, Sang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.465-474
    • /
    • 1998
  • Results on the analytic behavior to the limiting spectral distribution of matrices of sample convariance type. studied in Marcenko and Pastur [2] are derived. using the Stieltjes transform it is shown that the limiting distrbution has a continuous derivative away from zero the derivative being analytic whenever it is positive and the behavior of it resembles the behavior of a square root function near the boundary of its support.

ANALYSIS OF THE BEHAVIOR OF LIMITING SPECTRAL DENSITY FUNCTION OF LARGE DIMENSIONAL RANDOM MATRICES

  • Choi, Sang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.483-488
    • /
    • 2004
  • Results on the analytic behavior of the limiting spectral distribution of large dimensional random matrices, studied in Marcenko and Pastur [2], are derived. Using the Stieltjes transform, it is shown that the limiting distribution has a continuous derivative away from zero, the derivative being analytic whenever it is positive [3]. In the present paper, it is derived that the behavior of it resembles the behavior of a square root function near the boundary of its support.

A Low Power GaAs MMIC Multi-Function Chip for an X-Band Active Phased Array Radar System (X-대역 능동 위상 배열 레이더시스템용 저전력 GaAs MMIC 다기능 칩)

  • Jeong, Jin-Cheol;Shin, Dong-Hwan;Ju, In-Kwon;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.504-514
    • /
    • 2014
  • An MMIC multi-function chip with a low DC power consumption for an X-band active phased array radar system has been designed and fabricated using a 0.5 ${\mu}m$ GaAs p-HEMT commercial process. The multi-function chip provides several functions: 6-bit phase shifting, 6-bit attenuation, transmit/receive switching, and signal amplification. The fabricated multi-function chip with a compact size of $16mm^2(4mm{\times}4mm)$ exhibits a gain of 10 dB and a P1dB of 14 dBm from 7 GHz to 11 GHz with a DC low power consumption of only 0.6 W. The RMS(Root Mean Square) errors for the 64 states of the 6-bit phase shift and attenuation were measured to $3^{\circ}$ and 0.6 dB, respectively over the frequency.

A Study on the Safe Blasting Design by Statistical Analysis of Ground Vibration for Vibration Controlled Blasting in Urban Area (II) (도심지 미진동 제어발파에서 진동분석을 통한 안전 발파설계에 관한 연구(II) - 진동측정 자료의 통계적 분석을 위주로 -)

  • 김영환;안명석;박종남;강대우;이창우
    • Explosives and Blasting
    • /
    • v.18 no.2
    • /
    • pp.7-13
    • /
    • 2000
  • Abstract The characteristics of bed rock in the study area was classified by means of the crack coefficient estimated from the seismic velocities of in-situ and intact rocks. Various statistical methods were investigated in order to minimize the possible errors in estimating the predictive equation of blasting vibration and to enhance the determination coefficient $R^2$, for more reliable estimation. The determination coefficient showed the highest in the analysis for those groups using weighting function with the number of samples. The analysis for the weighting function employed with standard coefficient and variance also enhanced the determination coefficients significantly compared to the others, but the reliability was slightly lower than results obtained former method. Therefore the most reliable predictive equation of blasting vibration was found to be obtained from a regression analysis of the mean vibration level using the weighting of same distance groups within 15m with the same explosive charge weight per delay. The coefficients, K and n 317.4 and -1.66, respectively, when using the square root scaling, and 209.9 and -1.66, respectively, when using the cube root scaling. The analysis also showed that the square root scaling may be used in the distance less than 31m form the blast source, and the cube root scaling in the distance more than 31m for safe design.

  • PDF