• Title/Summary/Keyword: square of matrix

Search Result 454, Processing Time 0.029 seconds

Triply-Encoded Hadamard Transform Imaging Spectrometer using the Grill Spectrometer (그릴 분광계를 사용하여 3중 부호화한 하다마드 변환 영상 분광계)

  • Kwak, Dae-Yun;Park, Jin-Bae;Park, Yeong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1527-1536
    • /
    • 1999
  • In this paper, a triply-encoded Hadamard transform imaging spectrometer is proposed by applying the grill spectrometer to the Hadamard transform imaging spectrometer. The proposed system encodes the input radiation triply ; once through the input image mask and twice through the two masks in the grill spectrometer. We use an electro-optical mask in the grill spectrometer which is controlled by a left-cyclic simplex matrix. Then we modeled the system using $D^{-1}$ method. In this paper, the average mean square error associated with a recovered estimate is considered for performance evaluation. The relative performance is compared with those of the other conventional systems.

  • PDF

Dynamic Stress Analysis of joint by Practical Dynamic Load History (실하중 이력에 의한 조인트의 동적강도해석)

  • ;;;Akira Simamoto
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.118-123
    • /
    • 2001
  • Most structures of automobile are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic farces for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic load determination is developed by the combination of the principal stresses of F.E. analysis and experiment. Inverse problem and least square pseudo inverse matrix are adopted to obtain an inverse matrix of analyzed stresses matrix. Pseudo-Practical dynamic load was calculated for Lab. Test of sub-structure. GUI program(PLODAS) was developed for whole of above procedure. This proposed method could be extended to any geometric shape of structure.

  • PDF

Evaluation of elastic-plastic behavior in MMC interface according to the reinforced fiber placement structure (강화섬유 배치구조에 따른 MMC계면에서의 탄소성거동 평가)

  • Kang, Ji-Woong;Kim, Sang-Tae;Kwon, Oh-Heon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.410-414
    • /
    • 2004
  • Under longitudinal loading continuous fiber reinforced metal matrix composite(MMC) have interpreted an outstanding performance. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, elastic-plastic behavior of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber placement(square and hexagon) and fiber volume fractions were studied numerically. The interface was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

  • PDF

Empirical Analysis on Rao-Scott First Order Adjustment for Two Population Homogeneity test Based on Stratified Three-Stage Cluster Sampling with PPS

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.7 no.3
    • /
    • pp.208-213
    • /
    • 2014
  • National-wide and/or large scale sample surveys generally use complex sample design. Traditional Pearson chi-square test is not appropriate for the categorical complex sample data. Rao-Scott suggested an adjustment method for Pearson chi-square test, which uses the average of eigenvalues of design matrix of cell probabilities. This study is to compare the efficiency of Rao-Scott first order adjusted test to Wald test for homogeneity between two populations using 2009 Gyeongnam regional education offices's customer satisfaction survey (2009 GREOCSS) data. The 2009 GREOCSS data were collected based on stratified three-stage cluster sampling with probability proportional to size. The empirical results show that the Rao-Scott adjusted test statistic using only the variances of cell probabilities is very close to the Wald test statistic, which uses the covariance matrix of cell probabilities, under the 2009 GREOCSS data based. However it is necessary to be cautious to use the Rao-Scott first order adjusted test statistic in the place of Wald test because its efficiency is decreasing as the relative variance of eigenvalues of the design matrix of cell probabilities is increasing, specially more when the number of degrees of freedom is small.

Studies on the Ability to Detect Lesions According to the Changes in the MR Diffusion Weighted Images

  • Kim, Chang-Bok;Cho, Jae-Hwan;Dong, Kyung-Rae;Chung, Woon-Kwan
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.153-157
    • /
    • 2012
  • This study evaluated the ability of Diffusion-Weight Image (DWI), which is one of pulse sequences used in MRI based on the T2 weighted images, to detect samples placed within phantoms according to their size. Two identically sized phantoms, which could be inserted into the breast coil bilaterally, were prepared. Five samples with different sizes were placed in the phantoms, and the T2 weighted images and DWI were obtained. The Breast 2 channel coil of SIEMENS MAGNETOM Avanto 1.5 Tesla equipment was used for the experiments. 2D T2 weighted images were obtained using the following parameters: TR/TE = 6700/74 msec, Thickness/gap = 5/1 mm, Inversion Time (TI) = 130 ms, and matrix = $224{\times}448$. The parameters of DWI were that TR/TE = 8100/90 msec, Thickness/gap = 5/1 mm, matrix = $128{\times}128$, Inversion Time = 185 ms, and b-value = 0, 100, 300, 600, 1000 s/mm. The ratio of the sample volume on DWI compared to the T2 weighted images, which show excellent ability to detect lesions on MR images, was presented as the mean b-value. The measured b-value of the samples was obtained: 0.5${\times}$0.5 cm=0.33/0.34 square ${\times}$ cm (103%), 1${\times}$1 cm=1.28/1.25 square ${\times}$ cm (102.4%), 1.5${\times}$1.5 cm = 2.28/2.67 square ${\times}$ cm (85.39%), 2${\times}$2 cm=3.56/4.08 square ${\times}$ cm (87.25%), and 2.5${\times}$2.5 cm=7.53/8.77 square ${\times}$ cm (85.86%). In conclusion, the detection ability by the size of a sample was measured to be over 85% compared to T2 weighted image, but the detection ability of DWI was relatively lower than that of T2 weighted image.

A simplified geometric stiffness in stability analysis of thin-walled structures by the finite element method

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.313-321
    • /
    • 2012
  • Vibration analysis of a thin-walled structure can be performed with a consistent mass matrix determined by the shape functions of all degrees of freedom (d.o.f.) used for construction of conventional stiffness matrix, or with a lumped mass matrix. In similar way stability of a structure can be analysed with consistent geometric stiffness matrix or geometric stiffness matrix with lumped buckling load, related only to the rotational d.o.f. Recently, the simplified mass matrix is constructed employing shape functions of in-plane displacements for plate deflection. In this paper the same approach is used for construction of simplified geometric stiffness matrix. Beam element, and triangular and rectangular plate element are considered. Application of the new geometric stiffness is illustrated in the case of simply supported beam and square plate. The same problems are solved with consistent and lumped geometric stiffness matrix, and the obtained results are compared with the analytical solution. Also, a combination of simplified and lumped geometric stiffness matrix is analysed in order to increase accuracy of stability analysis.

G-Inverse and SAS IML for Parameter Estimation in General Linear Model (선형 모형에서 모수 추정을 위한 일반화 역행렬 및 SAS IML 이론에 관한 연구)

  • Choi, Kuey-Chung;Kang, Kwan-Joong;Park, Byung-Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.373-385
    • /
    • 2007
  • The solution of the normal equation arising in a general linear model by the least square methods is not unique in general. Conventionally, SAS IML and G-inverse matrices are considered for such problems. In this paper, we provide a systematic solution procedures for SAS IML.

DOD/DOA Estimation for Bistatic MIMO Radar Using 2-D Matrix Pencil Method (2차원 Matrix Pencil Method 기반의 바이스태틱 MIMO 레이더 표적 도래각 추정)

  • Lee, Kang-In;Kang, Wonjune;Yang, Hoon-Gee;Chung, Wonzoo;Kim, Jong Mann;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.782-790
    • /
    • 2014
  • In this paper, we apply the 2-D Matrix Pencil Method(MPM) to the estimation of the direction of arrival(DOA) of multiple signals of interest(SOIs) in bistatic MIMO radar. The 2-D MPM shows remarkable performance under a low SNR environment and low computational complexity to estimate the DOA of multiple SOIs. Also, it is possible to estimate the direction of departure(DOD) which is an angle from transmitter to target. To verify the proposed algorithm, we applied the proposed algorithm to a uniformly spaced linear array(ULA) and compared the RMSE(Root Mean Square Error) of DOA and DOD under the various SNR with those of the 2-D Capon algorithm.

LEAST-SQUARE SWITCHING PROCESS FOR ACCURATE AND EFFICIENT GRADIENT ESTIMATION ON UNSTRUCTURED GRID

  • SEO, SEUNGPYO;LEE, CHANGSOO;KIM, EUNSA;YUNE, KYEOL;KIM, CHONGAM
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.1-22
    • /
    • 2020
  • An accurate and efficient gradient estimation method on unstructured grid is presented by proposing a switching process between two Least-Square methods. Diverse test cases show that the gradient estimation by Least-Square methods exhibit better characteristics compared to Green-Gauss approach. Based on the investigation, switching between the two Least-Square methods, whose merit complements each other, is pursued. The condition number of the Least-Square matrix is adopted as the switching criterion, because it shows clear correlation with the gradient error, and it can be easily calculated from the geometric information of the grid. To illustrate switching process on general grid, condition number is analyzed using stencil vectors and trigonometric relations. Then, the threshold of switching criterion is established. Finally, the capability of Switching Weighted Least-Square method is demonstrated through various two- and three-dimensional applications.

FPGA Implementation of Levenverg-Marquardt Algorithm (LM(Levenberg-Marquardt) 알고리즘의 FPGA 구현)

  • Lee, Myung-Jin;Jung, Yong-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.73-82
    • /
    • 2014
  • The LM algorithm is used in solving the least square problem in a non linear system, and is used in various fields. However, in cases the applied field's target functionis complicated and high-dimensional, it takes a lot of time solving the inner matrix and vector operations. In such cases, the LM algorithm is unsuitable in embedded environment and requires a hardware accelerator. In this paper, we implemented the LM algorithm in hardware. In the implementation, we used pipeline stages to divide the target function operation, and reduced the period of data input of the matrix and vector operations in order to accelerate the speed. To measure the performance of the implemented hardware, we applied the refining fundamental matrix(RFM), which is a part of 3D reconstruction application. As a result, the implemented system showed similar performance compared to software, and the execution speed increased in a product of 74.3.