• Title/Summary/Keyword: square loss

Search Result 408, Processing Time 0.024 seconds

An Analysis of Flow Characteristics with Changing the Inside Shapes in Square Manhole (직사각형 맨홀의 내부형상변화에 따른 흐름특성 분석)

  • Jang, Suk-Jin;Yoon, Young-Noh;Kim, Jung-Soo;Yoon, Sei-Eui
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.199-202
    • /
    • 2007
  • In storm sewer networks a lot of manholes are installed to maintain and connect a sewer of urban area. There are some shapes of manhole such as circular type, square type, and so on. Square shape manholes are installed to connect the large diameter drainage pipes in general and have lager head losses than circular one. Consequently, it is important to analyze the head losses in square manhole because the head losses in square manhole are much bigger than the friction losses in pipes. Hydraulic experimental apparatus which can be changed the inside shape in square manhole was installed for this study. The experimental discharge was $16{\ell}/sec$. The head loss coefficients in the manhole were calculated by the experimental results. The range of head loss coefficients in the general square manhole were from 0.33 to 0.48 and the range of head loss coefficients in the square manhole changed inside shape were from 0.23 to 0.28.

  • PDF

An Experimental Study for Drainage Capacity Increment at Surcharged Square Manholes (과부하 사각형 맨홀의 배수능력 증대에 관한 실험적 연구)

  • Kim, Jung Soo;Song, Ju Il;Yoon, Sei Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.619-625
    • /
    • 2008
  • Urban sewer systems are designed to operate in open-channel flow regime and energy loss at square manholes is usually not significant. However, the energy loss at surcharged manholes is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the head loss associated with manholes, especially in surcharged flow. Hydraulic experimental apparatus which can change the manhole inner profile(CASE I, II, III, and IV) and the invert types(CASE A, B, C) were installed for this study. The experimental discharge was $16{\ell}/sec$. As the ratio of b/D(manhole width/inflow pipe diameter) increases, head loss coefficient increases due to strong horizontal swirl motion. The head loss coefficients for CASE I, II, III, and IV were 0.46, 0.38, 0.28 and 0.37, respectively. Side covers increase considerably drainage capacity at surcharged square manhole when the ratio of d/D(side cover diameter/inflow pipe diameter) was 1.0. The head loss coefficients for CASE A, B, and C were 0.45, 0.37, and 0.30, respectively. Accordingly, U-invert is the most effective for energy loss reduction at surcharged square manhole. This head loss coefficients could be available to evaluate the urban sewer system with surcharged flow.

An Experimental Study for Drainage Capacity Increment at Surcharged Manholes with a 90° Bend (과부하 90° 접합맨홀의 배수능력 증대에 관한 실험 연구)

  • Kim, Jung Soo;Song, Ju Il;Yoon, Sei Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.447-458
    • /
    • 2009
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban areas. Therefore, it is necessary to analyze head loss at manholes, especially in case of surcharged flow. Hydraulic experiments were conducted with three cases. Case A is to test whether the shapes of the manholes influence head loss coefficients. Case B and C were proposed to further reduce head losses by improving the manhole hydraulic efficiency. In case B, the joining part of the pipe at both shapes of manholes is shifted from central part to side part. The test in case C is to check the average head loss coefficient by installing the side benching in square manhole, based on shifted joining part model. The average head loss coefficient for circular and square manhole on case A was 1.6. This did not show much difference of the head loss coefficients in spite of the discharge variation in this case. However, case B and C show large difference between head loss coefficients due to the strong oscillation of water surface and the horizontal swirl motion. The circular and square manholes in case B reduced the head loss by 30% and 6% than ones in case A, respectively. The average head loss coefficient for circular manhole in case B was 1.1. Case C reduced average loss coefficients of the square manhole in case A from 1.6 to 1.1. Accordingly, the circular manhole in case B and the square manhole in case C showed the effective way to reduce the head loss. These head loss coefficients could be available to apply to the urban sewer system with surcharged flow.

Comparison of Rigorous Design Procedure with Approximate Design Procedure for Variable Sampling Plans Indexed by Quality Loss

  • Ishii, Yoma;Arizono, Ikuo;Tomohiro, Ryosuke;Takemoto, Yasuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.231-238
    • /
    • 2016
  • Traditional acceptance sampling plans have focused on the proportion of nonconforming items as an attribute criterion for quality. In today's modern quality management under high quality production environments, the reduction of the deviation from a target value in a quality characteristic has become the most important purpose. In consequence, various inspection plans for the purpose of reducing the deviation from the target value in the quality characteristic have been investigated. In this case, a concept of the quality loss evaluated by the deviation from the target value has been accepted as the variable evaluation criterion of quality. Further, some quality measures based on the quality loss have been devised; e.g. the process loss and the process capability index. Then, as one of inspection plans based on the quality loss, the rigorous design procedure for the variable sampling plan having desired operating characteristics (VS-OC plan) indexed by the quality loss has been proposed by Yen and Chang in 2009. By the way, since the estimator of the quality loss obeys the non-central chi-square distribution, the rigorous design procedure for the VS-OC plan indexed by the quality loss is complicated. In particular, the rigorous design procedure for the VS-OC plan requires a large number of the repetitive and complicated numerical calculation about the non-central chi-square distribution. On the other hand, an approximate design procedure for the VS-OC plan has been proposed before the proposal of the above rigorous design procedure. The approximate design procedure for the VS-OC plan has been constructed by combining Patnaik approximation relating the non-central chi-square distribution to the central chi-square distribution and Wilson-Hilferty approximation relating the central chi-square distribution to the standard normal distribution. Then, the approximate design procedure has been devised as a convenient procedure without complicated and repetitive numerical calculations. In this study, through some comparisons between the rigorous and approximate design procedures, the applicability of the approximate design procedure has been confirmed.

Analysis on Wave Absorbing Performance of a Pile Breakwater (파일 방파제의 소파성능 해석)

  • Cho, Il-Hyoung;Koh, Hyeok-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Based on the eigenfunction expansion method, the wave-absorbing performance of a square or circular pile breakwater was investigated. Flow separation resulting from sudden contraction and expansion is generated and is the main cause of significant energy loss. Therefore, evaluation of an exact energy loss coefficient is critical to enhancing the reliability of the mathematical model. To obtain the energy loss coefficient, 2-dimensional turbulent flow is analyzed using the FLUENT commercial code, and the energy loss coefficient can be obtained from the pressure difference between upstream and downstream. It was found that energy loss coefficient of circular pile is 20% that of a square pile. To validate the fitting equation for the energy loss coefficient, comparison between the analytical results and the experimental results (Kakuno and Liu, 1993) was made for square and circular piles with good agreement. The array of square piles also provides better wave-absorbing efficiency than the circular piles, and the optimal porosity value is near P=0.1.

Bayesian Estimation of Uniformly Stochastically Ordered Distributions with Square Loss

  • Oh, Myong-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.295-300
    • /
    • 2011
  • The Bayesian nonparametric estimation of two uniformly stochastically ordered distributions is studied. We propose a restricted Dirichlet Process. Among many types of restriction we consider only uniformly stochastic ordering in this paper since the computation of integrals is relatively easy. An explicit expression of the posterior distribution is given. When square loss function is used the posterior distribution can be obtained by easy integration using some computer program such as Mathematica.

Spectral Behaviors of Unidirectional Lasing from Various Semiconductor Square Ring Microcavities

  • Moon, Hee-Jong;Hyun, Kyung-Sook;Lim, Changhwan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1506-1511
    • /
    • 2018
  • Spectral behaviors of lasing from semiconductor square ring microcavities with structures for unidirectional laser oscillation were investigated. When a tapered structure was introduced, the lasing envelope shifted to a shorter wavelength region. Statistical estimate of the additional loss caused by the tapered structure was carried out by analyzing spectral data from many sets of cavities with various sizes. When a saw-edged structure was introduced, the unidirectional lasing functioned well but no apparent spectral shift was observed due to negligible additional loss.

A Study on the Reduction of Entry Loss by Inner Structure in Square Hood in Industrial Ventilation System (산업환기시설에서 사각형 후드의 내부 설치에 의한 유입손실 감소에 관한 연구)

  • Bae, Hyun-Joo;Yang, Won-Ho;Kim, Jong-Oh;Son, Bu-Soon
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.27-34
    • /
    • 2003
  • An objective of local exhaust hood design is to design the hood to operate as efficiently as possible. The greatest loss normally occurs at the entrance to the duct, due to the vena contracta in the throat of the duct. This can be accomplished by minimizing the loss that results from the vena contracta. There have been little studied to be cost-effective approach as installing simple instrument inside the throat of the hood. The aims of this paper were to minimize entry loss using inner square, and to measure the effect of inner square when installed inside hood throat. The results of this study were as follows; First, the magnitude of vena contracta could be considered as the difference between direct measured velocity and calculated velocity, which is from Bernoulli theory. In circle hood, calculated velocity and direct measured velocity were 10.7m/sec and 10.3n/sec, respectively. And the calculated velocity and direct measured velocity in square hood were 7.7m./sec and 6.5m/sec, respectively. Second, effect of inner square by width was carried out. The widths of inner square were L/1(18cm), L/2(9cm), L/3(6cm) and L/6(3cm). In case inner square was installed with 3cm width, the entry of coefficient was 0.93, comparing with 0.85 of entry of coefficient of general hood. Third, effect of inner square by distance from hood inside surface to inner square was carried out. The distances were L/3(6cm), L/6(3cm), L/9(2cm) and L/l8(1cm). In case the distance was 3cm the best efficiency was shown (Ce= 0.93). Fourth, effect of inner square by location from hood entry to duct inside was carried out. The locations of inner square were entry(0cm), L/6(3cm), L/3(6cm), L/2(9cm) and L/l(12cm). In case the location was 0cm, 3cm and 6cm the entry of coefficients were 0.93, 0.92 and 0.90, respectively.

A Study on Path Loss Prediction for the PNG of Russia Using the Free Space Model and the Hata Model (자유 공간 모델과 하타 모델을 이용한 러시아 PNG 지역의 경로 손실 예측에 관한 연구)

  • Park, Kyung-Tae;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.87-92
    • /
    • 2011
  • In this paper, we got the 800 ~ 900 MHz path loss model for Russia PNG area using the free space model and the Okumura-Hata Model. In order to add new regional properties to the existing path loss model, the mean square error technique is used to obtain the correction factor. The correction factors for the free space and the Hata model are 28, 13 dB respectively. By applying this correction factors, the new Russain PNG path loss model is proposed.

A Study on the Partial Path Loss Model By Using the Free Space and Rata Path Loss Model (자유 공간 모델과 하타 모델을 이용한 구간별 경로 손실 모델 설정에 관한 연구)

  • Park, Kyung-Tae;Cho, Hyung-Rae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.194-198
    • /
    • 2011
  • In this paper, we obtained the path loss characteristics in the 850 MHz for Russia area by using the free space path loss model and Okumura-Hata path loss model. In order to extract the additional path loss model parameter from the new Russian regional properties, the mean square error technique is used to obtain the correction factor. According to the obtained correction factor, the differences for the free space and Hata path loss model are 17, 6 dB in the 5 ~ 10 Km, 28, 14 dB in the 10 ~ 15 Km, and 35, 18 dB in the 15 ~ 20 Km. By applying the correction factors, the appropriate partial path loss models for the measured Russain area are proposed.