• 제목/요약/키워드: square hole

검색결과 136건 처리시간 0.025초

정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (II) - 비대칭 입구조건 효과 - (Heat/Mass Transfer and Flow Characteristics Within a Film Cooling Hole of Square Cross Sections (II) - Effects of Asymmetric Inlet Flow Condition -)

  • 이동호;강승구;조형희
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.937-944
    • /
    • 2002
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet now condition. The asymmetric inlet now condition is achieved by making distances between side walls of the secondary now duct and the film cooling hole different; one side wall is $2D_h$ apart from the center of the film cooling hole, while the other side wall is $1.5D_h$ apart from the center of the film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the now field has been analyzed by numerical calculation using a commercial code. Swirl now is generated at the inlet region and the heat/mass transfer pattem with the asymmetric inlet now condition is changed significantly from that with the symmetric condition. In the exit region, the effect of mainstream on the inside hole now is reduced with the asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl now generated by the asymmetric inlet condition.

Guiding Properties of Square-lattice Photonic Crystal Fibers

  • Im Jooeun;Kim Jinchae;Paek Un-Chul;Lee Byeong Ha
    • Journal of the Optical Society of Korea
    • /
    • 제9권4호
    • /
    • pp.140-144
    • /
    • 2005
  • In this paper we have investigated the guiding properties of photonic crystal fibers (PCFs) with a square-lattice of air-holes in the cladding. We have shown numerical results of PCFs with various air hole sizes and hole-to-hole spacings over a wide wavelength range. The group velocity dispersion, effective area and effective refractive index of PCF have been calculated numerically. The waveguide dispersion has greatly affected the group velocity dispersion when hole-to-hole spacing is about $1{\mu}m$. The effective area is quite flat over the wide spectral range whether the hole-to-hole spacing is large or ratio of diameter to pitch is large. From the field distribution, we found that the field is tightly confined within the core region of PCF when the pitch is $3{\mu}m$ and the air-filling fraction is 0.9.

카세트롤러와 홀다이를 이용한 원형소재에서 사각형 단면 인발 비교 (Comparison of Square Section Drawings from Circular Billets through Cassette-Roller-Dies and Hole Die)

  • 최종인;한철호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.208-211
    • /
    • 2001
  • In the drawing from round billet to non-circular section there are two different processes through solid hole die(HD) and the other cassette roller dies(CRD). The CRD process has several cassette type rollers and a billet is able to move through the given gaps between two profiled rollers. The objective of this study is based on the analysis and evaluation of two aforementioned processes using experiments and finite element simulation. In order to simulate the multi-stage drawing process from circular sectioned billet to rounded square section, the finite element analysis is applied to the process using a commercially available DEFORM-3D code. Two types of experimental drawing tests through designed and manufactured dies for pure copper and aluminum alloy are carried out at room temperature. The analysis included comparison of material properties before and after drawing of each process and also provide some useful information by a FEM simulation.

  • PDF

Optimized design for perforated plates with quasi-square hole by grey wolf optimizer

  • Chaleshtari, Mohammad H. Bayati;Jafari, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.269-280
    • /
    • 2017
  • One major concern that has occupied the mind of the designers is a structural failure as result of stress concentration in the geometrical discontinuities. Understanding the effective parameters contribute to stress concentration and proper selection of these parameters enables the designer get to a reliable design. In the analysis of perforated isotropic and orthotropic plates, the effective parameters on stress distribution around holes include load angle, curvature radius of the corner of the hole, hole orientation and fiber angle for orthotropic materials. This present paper tries to examine the possible effects of these parameters on stress analysis of infinite perforated plates with central quasi-square hole applying grey wolf optimizer (GWO) inspired by the particular leadership hierarchy and hunting behavior of grey wolves in nature, and also the present study tries to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of hole on isotropic and orthotropic plates. The advantages of grey wolf optimizer are stout, flexible, simple, and easy to be enforced. The used analytical solution is the expansion of Lekhnitskii's solution method. Lekhnitskii applied this method for the stress analysis of anisotropic plates containing circular and elliptical holes. Finite element numerical solution is employed to examine the results of present analytical solution. Results represent that by selecting the aforementioned parameters properly, fewer amounts of stress could be achieved around the hole leading to an increase in load-bearing capacity of the structure.

제곱근 연산 횟수 감소를 이용한 Canny Edge 검출에서의 전력 소모개선 (Improvement of Power Consumption of Canny Edge Detection Using Reduction in Number of Calculations at Square Root)

  • 홍석희;이주성;안호명;구지훈;김병철
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.568-574
    • /
    • 2020
  • 본 논문에서는 영상처리에 사용되는 Canny edge 검출 알고리즘 중 가장 높은 연산 복잡도를 가진 제곱근 연산 횟수를 감소시키는 방법을 제안한다. 제안하는 방법은 기울기 벡터 연산 과정에 사용되는 제곱근 연산을 이용할 때 일부 픽셀에 특정한 규칙을 사용해 홀을 만들어 제곱근 연산을 직접 하지 않고 주변 픽셀들의 연속성을 이용하여 기울기 벡터를 계산하여 연산 횟수를 감소시킨다. 다양한 테스트 이미지를 이용해 실험한 결과 홀이 1개인 경우 약 97%, 홀을 증가시키면 각각 약 94%, 90%, 88%의 일치율을 보였고, 홀이 1개인 경우에는 0.2ms의 연산시간이 감소되었고, 홀을 증가시키면 각각 약 0.398ms 0.6ms, 0.8ms의 연산시간이 감소되었다. 이를 바탕으로 hole이 2개인 경우 높은 정확도와 연산 수 절감을 통해 저전력 임베디드 비전 시스템을 구현할 수 있을 것으로 기대한다.

사각평판에서 구멍의 위치에 따른 자유진동에 관한 연구 (A Study on the Free Vibration of a Square Plate with Various Hole Positions)

  • 김형준;최경호;박정호;김현수;안찬우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.753-756
    • /
    • 2002
  • In this study, it is attempted to obtain the optimum size of holes in 15 square plate models where a hole exists on every quadrant of a plate, and to get eigenvalues by performing free vibration analysis far each model. Moreover, the specimen is produced from optimized square plate and eigenvalue of each plate is measured through the shocking load. And then the result is compared with that of finite element analysis. For free vibration analysis of the square plate, the boundary condition of finite element analysis and experiment is assumed as both ends support. From the results of this study, it is known that more stable structures can be designed by changing the natural frequency which is dependent on the location of holes and further studies are considered to be necessary for the basic design information.

  • PDF

사각평판에서 홀의 위치에 따른 자유진동에 관한 연구 (A Study on the Free Vibration of a Square Plate with Various Hole Position)

  • 김현수;안찬우;최경호;김동영;김형준
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.132-139
    • /
    • 2003
  • In this study, it is attempted to obtain the optimum size of holes in 15 square plate models where a hole exists on every quadrant of a plate, and to get eigenvalues by performing free vibration analysis for each model. Moreover, the specimen is produced from optimized square plate and eigenvalue of each plate is measured through the shocking load. And then the result is compared with that of finite element analysis. For free vibration analysis of the square plate, the boundary condition of finite element analysis and experiment is assumed as both ends clamped support. From the results of this study, it is known that more stable structures can be designed by changing the natural frequency which is dependent on the location of holes and further studies are considered to be necessary fur the basic design information.

충돌제트/유출냉각기법에서 분사판의 홀배열이 열전달에 미치는 영향 (The Effects of Impingement Hole Arrangements on Heat Transfer of an Impingement/Effusion Cooling System)

  • 최종현;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.101-109
    • /
    • 2002
  • Two perforated plates are used to investigate local heat/mass transfer characteristics in an impingement/effusion cooling system. A naphthalene sublimation method is conducted to determine the local heat/mass transfer coefficients on the upward facing surface of the effusion plate. Two plates are placed in parallel position with gap distances of 1, 2, 4 and 6 times of effusion hole diameter. The effects of hole arrangements of the plates are studied fur staggered, square, and hexagonal arrays. The experiments are conducted at Reynolds number of 10,000 based on the effusion hole diameter. The results show that the smaller hole size in the staggered array has the higher transfer coefficients on the stagnation region due to the formation of higher momentum flows through the impingement holes. In the square array, heat/mass transfer on the target plate is more uniform as the number of impingement holes increases. High and uniform heat/mass transfer coefficients are obtained for the hexagonal array.

Modeling and Investigation of Multilayer Piezoelectric Transformer with a Central Hole for Heat Dissipation

  • Thang, Vo Viet;Kim, In-Sung;Jeong, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.671-676
    • /
    • 2011
  • A multilayer square-type piezoelectric transformer with a hole at the center was investigated in this paper. Temperature distribution at the center was improved by using this construction, therefore increasing input voltage and output power. This model was simulated and investigated successfully by applying a finite element method (FEM) in ATILA software. An optimized structure was then fabricated, examined, and compared to the simulation results. Electrical characteristics, including output voltage and output power, were measured at different load resistances. The temperature distribution was also monitored using an infrared camera. The piezoelectric transformer operated at first radial vibration mode and a frequency area of 70 kHz. The 16 W output power was achieved in a three-layer transformer with 96% efficiency and $20^{\circ}C$ temperature rise from room temperature under 115 V driving voltage, 100 ${\Omega}$ matching load, $28{\times}28{\times}1.8mm$ size, and 2 mm hole diameter. With these square-type multilayer piezoelectric transformers, the temperature was concentrated around the hole and lower than in piezoelectric transformers without a hole.

충돌제트/유출냉각기법에서 분사판의 홀배열이 열전달에 미치는 영향 (The Effects of Impingement Hole Size on Heat Transfer of An Impingement/Effusion Cooling System)

  • 최종현;이동호;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.489-496
    • /
    • 2001
  • Two perforated plates are used to investigate local heat/mass transfer characteristics in an impingement/effusion cooling system. A naphthalene sublimation method is conducted to determine the local heat/mass transfer coefficients on the upward facing surface of the effusion plate. The two plates are placed in parallel position with gap distances of 1, 2, 4 and 6 times of effusion hole diameter. The effects of hole arrangements of the plates are studied for staggered, square, and hexagonal arrays. The experiments are conducted at Reynolds number of 10,000 based on the effusion hole diameter. The results show that the smaller hole size in the staggered array has the higher transfer coefficients on the stagnation region due to the formation of higher momentum flows through the impingement holes. In the square array, heat/mass transfer on the target plate is more uniform as the number of impingement holes increases. High and uniform heat/mass transfer coefficients are obtained in the hexagonal array.

  • PDF