• Title/Summary/Keyword: sputtering pressure

Search Result 843, Processing Time 0.029 seconds

RF Magnetron Sputtering 및 Evaporation을 이용하여 증착한 CdTe 박막의 물성평가

  • Kim, Min-Je;Jo, Sang-Hyeon;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.345-345
    • /
    • 2012
  • 최근 의료산업에서는 고해상도 및 동영상 구현이 가능한 직접 방식의 X-선 검측센서에서 X-ray 흡수효율이 좋은 반도체 센서(CdTe, CdZnTe 등)와 성숙된 기술, 집적효율이 뛰어난 CMOS 공정을 이용한 제품을 출시하여 대면적화 및 고집적화가 가능하게 되어 응용분야가 점차 확대되고 있는 추세이다. 하지만 이 역시 고 성능의 X-선 동영상 구현을 위해서는 고 해상도 문제, 검출효율 문제, 대면적화의 어려움이 있다. 기존의 X-선 광 도전층의 증착은 증착 속도와 박막 품질에서 우수한 Evaporation 법이 사용되고 있다. 한편, 대면적에 균일한 박막형성이 가능하기 때문에 양산성에서 우월성을 가지는 sputtering법의 경우, 밀도가 높은 소결체 타겟의 제조가 힘들뿐만 아니라 증착 속도가 낮아 장시간 증착 시 낮은 소결밀도로 인한 타겟 Particle 영향으로 인해서 대 면적에 고품질의 박막을 형성하기가 어렵다. 하지만 최근 소결체 타겟 제조기술 발달과 함께, 대면적화와 장시간 증착에 대한 어려움이 해결되고 있어 sputtering 법을 이용한 고품질 박막 제조 기술의 연구가 시급한 실정이다. 본 연구에서는 $50{\times}50$ mm 크기의 non-alkali 유리기판(Corning E2000) 위에 Evaporation과 RF magnetron sputtering을 사용하여 다양한 기판온도 (RT, 100, 200, 300, $350^{\circ}C$)에서 $1{\mu}m$의 두께로 CdTe 박막을 증착하였다. RF magnetron sputtering의 경우 CdTe 단일 타겟(50:50 at%)을 사용하였으며 Base pressure는 약 $5{\times}10^{-6}$ Torr 이하까지 배기하였고, Working pressure는 약 $7.5{\times}10^{-3}$ Torr에서 증착하였다. 시편과 기판 사이의 거리는 70 mm이며 RF 파워는 150 W로 유지하였다. CdTe 박막의 미세구조는 X-ray diffraction (XRD, BRUKER GADDS) 및 Field Emission Scanning Electron Microscopy (FE-SEM, Hitachi)를 사용하여 측정하였다. 또한, 조건별 박막의 조성은 Energy Dispersive X-ray Spectroscopy (EDS, Horiba, 7395-H)을 사용하여 평가하였다. X-선 동영상 장치의 구현을 위해서는 CdTe 다결정 박막의 높은 흡수효율, 전하수집효율 및 SNR (Signal to Noise Ratio) 등의 물성이 요구된다. 이러한 물성을 나타내기 위해서는 CdTe 박막의 높은 결정성이 중요하다. Evaporation과 RF magnetron sputtering로 제작된 CdTe 박막은 공정 온도가 증가함에 따라 기판상에 도달하는 스퍼터 원자의 에너지 증가로 인해서 결정립이 성장한 것을 확인할 수 있었다. 따라서 CdTe 박막이 직접변환방식 고감도 X-ray 검출기 광도 전층 역할을 수행할 수 있을 것으로 기대된다.

  • PDF

High rate deposition of poly-si thin films using new magnetron sputtering source

  • Boo, Jin-Hyo;Park, Heon-Kyu;Nam, Kyung-Hoon;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.186-186
    • /
    • 2000
  • After LeComber et al. reported the first amorphous hydrogenated silicon (a-Si: H) TFT, many laboratories started the development of an active matrix LCDs using a-Si:H TFTs formed on glass substrate. With increasing the display area and pixel density of TFT-LCD, however, high mobility TFTs are required for pixel driver of TF-LCD in order to shorten the charging time of the pixel electrodes. The most important of these drawbacks is a-Si's electron mobiliy, which is the speed at which electrons can move through each transistor. The problem of low carier mobility for the a-Si:H TFTs can be overcome by introducing polycrystalline silicon (poly-Si) thin film instead of a-Si:H as a semiconductor layer of TFTs. Therefore, poly-Si has gained increasing interest and has been investigated by many researchers. Recnetly, fabrication of such poly-Si TFT-LCD panels with VGA pixel size and monolithic drivers has been reported, . Especially, fabricating poly-Si TFTs at a temperature mach lower than the strain point of glass is needed in order to have high mobility TFTs on large-size glass substrate, and the monolithic drivers will reduce the cost of TFT-LCDs. The conventional methods to fabricate poly-Si films are low pressure chemical vapor deposition (LPCVD0 as well as solid phase crystallization (SPC), pulsed rapid thermal annealing(PRTA), and eximer laser annealing (ELA). However, these methods have some disadvantages such as high deposition temperature over $600^{\circ}C$, small grain size (<50nm), poor crystallinity, and high grain boundary states. Therefore the low temperature and large area processes using a cheap glass substrate are impossible because of high temperature process. In this study, therefore, we have deposited poly-Si thin films on si(100) and glass substrates at growth temperature of below 40$0^{\circ}C$ using newly developed high rate magnetron sputtering method. To improve the sputtering yield and the growth rate, a high power (10~30 W/cm2) sputtering source with unbalanced magnetron and Si ion extraction grid was designed and constructed based on the results of computer simulation. The maximum deposition rate could be reached to be 0.35$\mu$m/min due to a high ion bombardment. This is 5 times higher than that of conventional sputtering method, and the sputtering yield was also increased up to 80%. The best film was obtained on Si(100) using Si ion extraction grid under 9.0$\times$10-3Torr of working pressure and 11 W/cm2 of the target power density. The electron mobility of the poly-si film grown on Si(100) at 40$0^{\circ}C$ with ion extraction grid shows 96 cm2/V sec. During sputtering, moreover, the characteristics of si source were also analyzed with in situ Langmuir probe method and optical emission spectroscopy.

  • PDF

Electrical mechanism analysis of $Al_2O_3$ doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering (원통형 타겟 형태의 DC 마그네트론 스퍼터링을 이용한 산화 아연 박막의 전기적 기제에 대한 분석)

  • Jang, Juyeon;Park, Hyeongsik;Ahn, Sihyun;Jo, Jaehyun;Jang, Kyungsoo;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.55.1-55.1
    • /
    • 2010
  • Cost efficient and large area deposition of superior quality $Al_2O_3$ doped zinc oxide (AZO) films is instrumental in many of its applications including solar cell fabrication due to its numerous advantages over ITO films. In this study, AZO films were prepared by a highly efficient rotating cylindrical dc magnetron sputtering system using AZO target, which has a target material utilization above 80%, on glass substrates in argon ambient. A detailed analysis on the electrical, optical and structural characteristics of AZO thin films was carried out for solar cell application. The properties of films were found to critically depend on deposition parameters such as sputtering power, substrate temperature, working pressure, and thickness of the films. A low resistivity of ${\sim}5.5{\times}10-4{\Omega}-cm$ was obtained for films deposited at 2kW, keeping the pressure and substrate temperature constant at 3 mtorr and $230^{\circ}C$ respectively, mainly due to an increase in carrier mobility and large grain size which would reduce the grain boundary scattering. The increase in carrier mobility with power can be attributed to the columnar growth of AZO film with (002) preferred orientation as revealed by XRD analysis. The AZO films showed a high transparency of>87% in the visible wavelength region irrespective of deposition conditions. Our results offers a cost-efficient AZO film deposition method which can fabricate films with significant low resistivity and high transmittance that can find application in thin-film solar cells.

  • PDF

Preparation of Transparent and Conducting $SnO_2$ Thin Films by RF Magnetron Sputtering Method (RF 마그네트론 스퍼터링법에 의한 투명 전도성 $SnO_2$박막의 제조)

  • 신성호;박광자;김현후
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.2
    • /
    • pp.139-146
    • /
    • 1996
  • Transparent and conducting Sb-doped $SnO_2$ thin films were prepared by rf magnetron sputtering technology. But it showed a serious damage phenomenon on the surface of as-deposited films. In order to avoid a damage caused in the substrate center and location facing to target erosion, a ring plate of masking glass was installed at 1.5 cm above target surface. The uniformity and electrical characteristic of $SnO_2$ thin films were evaluated by the control of optimal conditions in the magnetron sputtering operation such as rf power, sputtering gas pressure, and substrate temperature. In the experimental results using the operating conditions, the optimum temperature, which produced uniform and damageless films, shifted with the change of gas pressure. The rate was about $100^{\circ}C$/5 mTorr at rf power of 50 W Similarly, the optimum temperature in compensation for an increase of rf power shifted down to a proper rate.

  • PDF

Microstructure and Electrical Properties of SrBi$_2$Ta$_2$O$_9$ Ferroelectric Thin Films Prepared by RF Magnetron Sputtering Method (R-F magnetron sputtering 법으로 제조된 SrBi$_2$Ta$_2$O$_9$ 강유전성 박막의 미세구조 특성 및 전기적 특성)

  • 김효영;박상준;장건익
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.51-61
    • /
    • 1999
  • $SrBi_2Ta_2O_9$ thin films were prepared on $Pt/SiO_2$/Si p-tyPp (100) substrate by r.f. magnetron sputtering method. The films were annealed at $800^{\circ}C$ and characterized in terms of micro-structures and electrical properties depending on film deposition conditions. XRD patterns of SBT films annealed at $800^{\circ}C$ indicated the typical SBT phase of (006), (111), and (200) with BiPt additional peaks. SEM images show that crystal gram become to grow with increasing the substrate temperature and decreasing the gas pressure. The remanant polarization(2Pr) and the coercive field(Ec) of 200nm thickness SBT film which was deposited at 10$0^{\circ}C$ under 50mtorr gas pressure and annealed at $800^{\circ}C$ were 20.07$\mu$C/$\textrm {cm}^2$ and 79kV/cm, respectively.

  • PDF

The Effect of Bi Content on the C-axis Oriented Growth of $SrBi_2$$Ta_2$$O_9$ Thin Films Fabricateed by R.F. Magnetron Sputtering (R.F. 마그네트론 스퍼터링에 의한 제조된 $SrBi_2$$Ta_2$$O_9$ 박막의 C축 배향성장에 미치는 Bi양의 영향)

  • 배철휘;이전국;이시형;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1107-1112
    • /
    • 1998
  • We could obtan c-axis oriented $SrBi_2$$Ta_2$$O_9$ thin films on usual Pt(111)/Ti/$SiO_2$/Si(100) substrate using a r. f. magnetron sputtering technique. According to the increase of sputtering pressure from 250 to 300 mTorr the Bi content and degree of the c-a xis preferred orientation of $SrBi_2$$Ta_2$$O_9$ thin films were increased. By controlling Bi(or $Bi_2O_3$) loss from $SrBi_2$$Ta_2$$O_9$ thin films during post annealing and by inserting $Bi_2O_3$ layer in $SrBi_2$$Ta_2$$O_9$ thin films the effect of Bi content on the c-axis oriented growth of $SrBi_2$$Ta_2$$O_9$ thin films could be investigated without the effect of sputtering pressure. The degree of the c-axis preferred orientation of $SrBi_2$$Ta_2$$O_9$ thin films was increased with increasing with increasing Bi content by control of Bi(or $Bi_2O_3$) loss of $SrBi_2$$Ta_2$$O_9$ thin films. But the c-axis oriented growth of $SrBi_2$$Ta_2$$O_9$ thin films disappeared by the inserting of $Bi_2O_3$ lay-er in $SrBi_2$$Ta_2$$O_9$ thin films.

  • PDF