• Title/Summary/Keyword: sputtering film

Search Result 2,886, Processing Time 0.033 seconds

Structuyal and physical properties of thin copper films deposited on porous silicon (다공성 실리콘위에 증착된 Cu 박막의 구조적 물리적 특성)

  • 홍광표;권덕렬;박현아;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.123-129
    • /
    • 2003
  • Thin transparent Cu films in the thickness range of 10 ~ 40 nm are deposited by rf-magnetron sputtering on porous silicon (PS) anodized on p-type silicon in dark. Microstructural features of the Cu films are investigated using SEM, AFM and XRD techniques. The RMS roughness of the Cu films is found to be around 1.47 nm and the grain growth is columnar with a (111) preferred orientation and follows the Volmer-Weber mode. The photoluminescence studies showed that a broad luminiscence peak of PS near the blue-green region gets blue shifted (~0.05 eV) with a small reduction in intensity and therefore, Cu-related PL quenching is absent. The FTIR absorption spectra on the PS/Cu structure revealed no major change of the native PS peaks but only a reduction in the relative intensity. The I-V characteristic curves further establish the Schottky nature of the diode with an ideality factor of 2.77 and a barrier height of 0.678 eV. An electroluminiscence (EL) signal of small intensity could be detected for the above diode.

Fabrication of Hot Electron Based Photovoltaic Systems using Metal-semiconductor Schottky Diode

  • Lee, Young-Keun;Jung, Chan-Ho;Park, Jong-Hyurk;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.305-305
    • /
    • 2010
  • It is known that a pulse of electrons of high kinetic energy (1-3 eV) in metals can be generated with the deposition of external energy to the surface such as in the absorption of light or in exothermic chemical processes. These energetic electrons are not in thermal equilibrium with the metal atoms and are called "hot electrons" The concept of photon energy conversion to hot electron flow was suggested by Eric McFarland and Tang who directly measured the photocurrent on gold thin film of metal-semiconductor ($TiO_2$) Schottky diodes [1]. In order to utilize this scheme, we have fabricated metal-semiconductor Schottky diodes that are made of Pt or Au as a metallic layer, Si or $TiO_2$ as a semiconducting substrate. The Pt/$TiO_2$ and Pt/Si Schottky diodes are made by PECVD (Plasma Enhanced Chemical Vapor Deposition) for $SiO_2$, magnetron sputtering process for $TiO_2$, e-beam evaporation for metallic layers. Metal shadow mask is made for device alignment in device fabrication process. We measured photocurrent on Pt/n-Si diodes under AM1.5G. The incident photon to current conversion efficiency (IPCE) at different wavelengths was measured on the diodes. We also show that the steady-state flow of hot electrons generated from photon absorption can be directly probed with $Pt/TiO_2$ Schottky diodes [2]. We will discuss possible approaches to improve the efficiency of photon energy conversion.

  • PDF

박막태양전지용 투명전도성 ZnO(Al) 박막제조 및 특성 (II)

  • Son, Yeong-Ho;Park, Jung-Jin;Choe, Seung-Hun;Kim, Jin-Ha;Lee, Dong-Min;Choe, Jeong-Gyu;Jeong, Ui-Cheon;Chae, Jin-Gyeong;Lee, Jong-Geun;Jeong, Myeong-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.292-292
    • /
    • 2012
  • 현재 투명전극은 주로 ITO를 사용하고 있으며, ITO는 인듐산화물(In2O3)과 주석산화물(SnO2)이 9대 1의 비율로 혼합된 화합물로 인듐이 주성분이다. 따라서 ITO 사용량의 증가는 인듐의 수요 증가를 이끌어 2003년 이후 인듐 잉곳의 가격이 급등하였다. LCD에 응용되는 금속재료의 가격추이를 비교해보면, 인듐이 가장 큰 변화를 보이고 있으며, 2005년 인듐 가격은 2002년 대비 1,000% 이상 상승하였다가 2007년 이후 500%p 하락하여 2008년 2월 22일 기준으로 톤당 49만 달러에 거래되고 있다. 같은 기간 동안 알루미늄의 가격은 76.6% 상승하였으며 구리는 394%, 주석은 331% 상승하였다. 이러한 인듐의 가격 상승폭은 동일한 기간 동안 다른 금속 재료와 비해 매우 크며, 단위 질량당 가격도 20배 이상 높은 수준이다. ITO의 주성분인 인듐의 이러한 가격의 급등 및 향후 인듐의 Shortage 예상으로 인해 ITO 대체재 확보의 필요성이 증가되고 있다. 태양광 발전산업에서 현재 주류인 결정질 실리콘 태양전지의 변환효율은 꾸준히 향상되고 있으나, 태양전지의 가격이 매년 서서히 하강되고 있는 실정에서 결정질 실리콘 가격의 상승 등으로 고부가 가치 산업유지에 어려움이 있으며, 생산 원가를 낮출 수 있는 태양전지 제조기술로는 2세대 태양전지로 불리는 박막형이 현재의 대안으로 자리매김하고 있으며, 박막태양전지 산업분야가 현재의 정부정책 지원 없이 자생력을 갖추고 또한 시장 경쟁력을 확보하기 위해서는 박막태양전지 개발과 더불어 저가의 재료개발도 시급한 상황이다. 본 연구에서는 In-line magnetron sputtering system을 사용하여 소다라임 유리기판 위에 박막태양전지용 투명전도성 ZnO(Al) 박막을 제작하였고, 특히 이 박막은 n-형 반도체 특성을 가져야하기 때문에 홀이동도와 개리어농도의 상관관계 및 박막의 두께, 광투과율 특성, 온도 의존성을 조사하였고, 이를 논하고자 한다. (본 연구는 중소기업청의 기술혁신개발사업 연구지원금으로 이루어졌음).

  • PDF

Thermal Stability of Photo-produced H3O+ in the Photolyzed Water-ice Film

  • Moon, Eui-Seong;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.192-192
    • /
    • 2011
  • Hyperthermal ion scattering experiments were conducted with low kinetic energy (<35 eV) cesium ion beams to analyze the UV-photolyzed water-ice films. Neutral molecules (X) on the surface were detected as cesium-molecule ion clusters ($CsX^+$) which were formed through a Reactive Ion Scattering (RIS) process. Ionic species on the surface were desorbed from the surface via a low energy sputtering (LES) process, and were analyzed [1]. Using these methods, the thermal stability of hydronium ion ($H_3O^+$) that was produced by UV light was examined. As the thermal stability of $H_3O^+$ is related with the reaction, $H_3O^+$ + OH + $e^-$ (or $OH^-$) ${\rightarrow}$ $2H_2O$, which is similar or same with the reverse reaction of the auto-ionization of water, the result from this work would be helpful to understand the auto-ionization of $H_2O$ in water-ice that has not been well-understood yet. However, as $H_3O^+$ was not detected through a LES method, the titration experiment of $H_3O^+$ with methylamine ($CH_3NH_2$, MA), MA + $H_3O^+\;{\rightarrow}\;MAH^+$ + $H_2O$, was conducted. In this case, the presence of $MAH^+$ indicates that of $H_3O^+$ in the ice. Thus the pristine ice was photolyzed with UV light for a few minutes and this photolyzed ice was remained at the certain temperature for minutes without UV light. Then MA was adsorbed on that surface so that the population of $H_3O^+$ was found. From the calibration experiments, the relation of $MAH^+$ and $H_3O^+$ was found, so that the thermal stability of $H_3O^+$ can be investigated [2].

  • PDF

Decision of Interface and Depth Scale Calibration of Multilayer Films by SIMS Depth Profiling

  • Hwang, Hye-Hyun;Jang, Jong-Shik;Kang, Hee-Jae;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.274-274
    • /
    • 2012
  • In-depth analysis by secondary ion mass spectrometry (SIMS) is very important for the development of electronic devices using multilayered structures, because the quantity and depth distribution of some elements are critical for the electronic properties. Correct determination of the interface locations is critical for the calibration of the depth scale in SIMS depth profiling analysis of multilayer films. However, the interface locations are distorted from real ones by the several effects due to sputtering with energetic ions. In this study, the determination of interface locations in SIMS depth profiling of multilayer films was investigated by Si/Ge and Ti/Si multilayer systems. The original SIMS depth profiles were converted into compositional depth profiles by the relative sensitivity factors (RSF) derived from the atomic compositions of Si-Ge and Si-Ti alloy reference films determined by Rutherford backscattering spectroscopy. The thicknesses of the Si/Ge and Ti/Si multilayer films measured by SIMS depth profiling with various impact energy ion beam were compared with those measured by TEM. There are two methods to determine the interface locations. The one is the feasibility of 50 atomic % definition in SIMS composition depth profiling. And another one is using a distribution of SiGe and SiTi dimer ions. This study showed that the layer thicknesses measured with low energy oxygen and Cs ion beam and, by extension, with method of 50 atomic % definition were well correlated with the real thicknesses determined by TEM.

  • PDF

Molybdenum Oxides as Diffusion Barrier Layers against MoSe2 Formation in A Nonvacuum Process for CuInSe2 Solar Cells (비진공법 CuInSe2 태양전지에서 MoSe2의 생성을 억제하기 위한 산화 몰리브데늄 확산장벽 층)

  • Lee, Byung-Seok;Lee, Doh-Kwon
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.85-90
    • /
    • 2015
  • Two-step processes for preparing $Cu(In,Ga)Se_2$ absorber layers consist of precursor layer formation and subsequent annealing in a Se-containing atmosphere. Among the various deposition methods for precursor layer, the nonvacuum (wet) processes have been spotlighted as alternatives to vacuum-based methods due to their potential to realize low-cost, scalable PV devices. However, due to its porous nature, the precursor layer deposited on Mo substrate by nonvacuum methods often suffers from thick $MoSe_2$ formation during selenization under a high Se vapor pressure. On the contrary, selenization under a low Se pressure to avoid $MoSe_2$ formation typically leads to low crystal quality of absorber films. Although TiN has been reported as a diffusion barrier against Se, the additional sputtering to deposit TiN layer may induce the complexity of fabrication process and nullify the advantages of nonvacuum deposition of absorber film. In this work, Mo oxide layers via thermal oxidation of Mo substrate have been explored as an alternative diffusion barrier. The morphology and phase evolution was examined as a function of oxidation temperature. The resulting Mo/Mo oxides double layers were employed as a back contact electrode for $CuInSe_2$ solar cells and were found to effectively suppress the formation of $MoSe_2$ layer.

Effect of Ag Underlayer Thickness on the Electrical and Optical Properties of IGZO/Ag Layered Films (Ag 완충박막 두께에 따른 IGZO/Ag 적층박막의 특성 변화)

  • Kim, So-Young;Kim, Sun-Kyung;Kim, Seung-Hong;Jeon, Jae-Hyun;Gong, Tae-Kyung;Choi, Dong-Hyuk;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.5
    • /
    • pp.230-234
    • /
    • 2014
  • IGZO/Ag bi-layered films were deposited on glass substrate at room temperature with radio frequency and direct current magnetron sputtering, respectively to consider the effect of Ag buffer layer on the electrical, optical and structural properties. For all deposition, while the thickness of Ag buffer layer was varied as 10, 15, and 20 nm, The thickness of IGZO films were kept at 100 nm, In a comparison of figure of merit, IGZO films with 15 nm thick Ag buffer layer show the higher figure of merit ($1.1{\times}10^{-2}{\Omega}^{-1}$) than that of the IGZO single layer films ($3.7{\times}10^{-4}{\Omega}^{-1}$). From the observed results, it is supposed that the IGZO 100 nm/Ag 15 nm bi-layered films may be an alternative candidate for transparent electrode in a transparent thin film transistor device.

Influence of Au Interlayer Thickness on the Opto-Electrical Properties of ZnO Thin Films (Au 층간박막 두께에 따른 ZnO 박막의 전기광학적 특성 변화)

  • Park, Yun-Je;Choe, Su-Hyeon;Kim, Yu-Sung;Cha, Byung-Chul;Gong, Young-Min;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.3
    • /
    • pp.104-108
    • /
    • 2020
  • ZnO single layer films (100 nm thick) and Au intermediated ZnO films (ZnO/Au/ZnO; ZAZ) were deposited on the glass substrate by RF and DC magnetron sputtering at room temperature and then the influence of the Au interlayer on the electrical and optical properties of the films were investigated. ZnO thin films show the visible transmittance of 90.3 % and sheet resistance of 63.2×108 Ω/□. In ZAZ films, as Au interlayer thickness increased from 6 to 10 nm, the sheet resistance decreased from 58.3×108 to 48.6 Ω/□, and the visible transmittance decreased from 84.2 to 73.9 %. From the observed results, it can be concluded that the intermediate Au thin film enhances the opto-electrical performance of ZnO films without intentional substrate heating.

Study on the Electrical Characteristics of ACTFELD with $Ta_2O_5$ Thin Film ($Ta_2O_5$박막을 이용한 ACTFELD 소자의 계면 및 동작특성에 관한 연구)

  • Kim, Young-Sik;Oh, Jeong-Hoon;Lee, Yun-Hi;Young, Sung-Man;Oh, Myung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1424-1426
    • /
    • 1997
  • 저전압 구동이 가능한 교류구동형 박막전기발광소자를 구현하기 위해 높은 유전상수를 가지며 특히 광학적 굴절률이 발광박막과 유사하여 광학적 특성 개선에도 효과적인 것으로 알려져 있는 $Ta_2O_5$를 제조하였다. $Ta_2O_5$박막은 rf-magnetron sputtering방법으로 형성하였으며 기판온도, working pressure, 박막의 두께에 따른 전기적인 특성을 조사하였다. 10mTorr에서 제조된 $Ta_2O_5$박막은 $22{\sim}26$의 비유전율을 보였고, 유전손실은 $0.007{\sim}0.03(1kHz{\sim}10kHz)$의 값을 보였다. $100^{\circ}C$에서 제조된 박막의 전하저장용량은 $7.9{\mu}C/cm^2$이었다. 제조된 박막의 항복전압은 인가 전압의 극성에 의존하며, 전류특성은 기판온도와 200nm와 300nm의 두께에서는 $V^{1.95}{\sim}V^{2.35}$에 비례하는 space charge limited current특성을 보였고, 400nm에서는 Poole Frenkel특성을 보였다. 이상의 결과로 TFEL소자에 응용에 적합한 $Ta_2O_3$ 박막은 $200^{\circ}C$에서 증착되고 200nm와 300nm인 것으로 나타났으며, 제조된 MIS구조(ITO-$Ta_2O_5$-ZnS-Al)의 ACTFEL소자에서의 전도전하는 각각 $13uC/cm^2$, $8.3uC/cm^2$로 조사되었다.

  • PDF

Leakage Current of Capacitive BST Thin Films (BST 축전박막의 누설전류 평가)

  • 인태경;안건호;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.803-810
    • /
    • 1997
  • Ba0.5Sr0.5TiO3 thin films were deposited by RF magnetron sputliring method in order to clarify the anneal condition and doping effect on loakage current Nb and Al were selected as electron donor and acceptor dopants respectively, in the BST films because they have been known to have nearly same ionic radii as Ti and thought to substitute Ti sites to influence the charge carrier and the acceptor state adjacent to the gram boundary. BST thin films prepared in-situ at elevated temperature showed selatively high leakage current density and low breakdown voltage. In order to achieve smooth surface and to improve electrical properties, BST thin films were deposited at room temperature and annealed at elevated temperature. Post-annealed BST thin films showed smoother surface morphology and lower leakage current density than in-situ prepared thin films. The leakage current density of Al doped thin films was measured to be around 10-8A/cm2, which is much lower than those of undoped and Nb doped BST films. The result clearly demonstrates that higher Schottky barrier and lower mobile charge carrier concentration achieved by annealing in the oxygen atmosphere and by Al doping are desirable for reducing leakage current density in BST thin films.

  • PDF