• Title/Summary/Keyword: spur gear

Search Result 190, Processing Time 0.022 seconds

Precision Cold Forging of Spur Gear Using the Alloy Steel (합금강을 이용한 스퍼기어의 정밀 냉간 단조)

  • Choi, J.C.;Choi, Y.
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.500-507
    • /
    • 1997
  • The conventional closed-die forgings had been applied to the forging of spur gears. But the forgings require high forging-pressure. In this paper, new precision forging technology have been developed. The developed technology is two steps forging process. Good shaped products are forged successfully with lower forging-pressure than those of conventional forging. The accuracy of the forged spur gear obtained by new precision forging technology is set nearly equal to that of cut spur gear of fourth and fifth class in Korean industrial standard.

  • PDF

A Study on Improvement and Estimation of Fatigue Strength in Sintering Spur Gear (소결치차의 성능향상과 강도평가에 관한 연구)

  • 류성기;문봉호
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.53-58
    • /
    • 1996
  • This paper deals with the bending fatigue strength of sintering spur gears. The test specimens are used to sintering spur gear to be consisted of Fe-C-Ni-Mn and SCM415 spur gear. The fatigue test at a constant stress amplitude is performed by using an electrohydraulic servo-controlled pulsating tester. The S-N curves are obtained and the enhancement of fatigue strength due to carburized treatment is clarified, Accordingly, this study presents the fatigue strength of sintering spur gear, SCM415 spur gear and carburized gears of them. The strength enhancement due to the carburized treatment is discussed.

  • PDF

A Study on the 3-Dimensional Modeling of Spur Gear Using VisualLISP (VisualLISP을 이용한 스퍼기어의 3차원 모델링에 관한 연구)

  • 이승수;김민주;김래호;전언찬
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.48-54
    • /
    • 2004
  • This paper describes the development of automatic shape design program for spur gear. It produces automatically third-dimensional surface and solid model used in CAD/CAM system with inputting simple measurements. This program can maximize user's convenience and get surface and solid model quickly as accepting GUI(graphic user interface). Automatic shape design program for spur gear was developed by Visual LISP, a developer program. Besides, a geometrical method and a mathematical algerian are used in this program. Use frequency of a fine spur gear is on the increase recently and manufacture process of this gear is heat treatment after press processing with molding. In this press processing, the upper punch portion of a fine spur gear shape is drafted by CAM. Therefore, estimated that surface and solid model of spur gear used to CAM are needed in this research. In this research, after 2 ㎜ gear was modeled by auto shape design program, the upper punch portion of a fine spur gear was manufactured as giving third-dimensional model to CAM software and then, displayed the result as applying to press process.

Analysis of the upsetting type process for spur gear cold forging using 3D-FEM (3차원 유한요소법을 이용한 Upsetting Type Spur Gear 냉간 단조 공정 해석)

  • Chun S.H.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.135-138
    • /
    • 2004
  • Since the upsetting type is superior to an extrusion type to get the dimensional accuracy of cold forged spur gear, the upsetting type process far spur gear cold forging has been studied. FE analysis of upsetting type process fur spur gear cold forging was performed to investigate about flow pattern of workpiece and die stress. To analyze the elastic characteristics of die, both rigid and elastic material model were used during loading stage. Under-filled defects were detected In lower portions of spur gear forged by upsetting type in experimental. When the elastic material model for die was used, the under-filled defects could be predicted. On the other hand, if the material model of die was rigid, the defects could not been presented because the die deflection was not considered.

  • PDF

A Study on the Modeling of Spur and Helical Gear based on Mathematical Algorithm (수학적 알고리즘에 기초한 스퍼기어 및 헬리컬 기어 모델링에 관한 연구)

  • 김태호;이승수;김민주;전언찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.28-31
    • /
    • 2002
  • In this study, we develop automatic design program, which create 3D model of spur gear and helical gear used VisuaILISP and create helical gear in the CATIA using 2D profile of gear. This model become the standard model, which give not only in itself mold information but also computer processed product with measuring date. Spur gear require mathematical examination of involute curve and trocoidal fillet curve. Automatic design program, which have a mathematical development create the profile of spur gear.

  • PDF

Simulation of Meshing for the Spur Gear Drive with Modified Tooth Surfaces

  • Seol, In-Hwan;Chung, Soon-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.490-498
    • /
    • 2000
  • The authors have proposed methods (lead crowning and profile modification) for modifying the geometry of spur gears and investigated the contact pattern as well as the transmission errors to recommend the appropriate amount of modification. Based on the investigation, dynamic load of the modified spur gear drive has been calculated, which is helpful to predict the life of the designed gear drive. Computer programs for simulation of meshing, contact and dynamics of the modified spur gears have been developed. The developed theory is illustrated with numerical examples.

  • PDF

Comparison of Dynamic Characteristics of Spur Gears and Helical Gears (스퍼기어와 헬리컬기어의 동적 특성 비교)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.358-364
    • /
    • 2012
  • This work dealt with dynamic characteristics of spur gear and helical gear system to understand the gear vibration and noise. To find out dynamic characteristics in the gear system, a finite element model and an analytic model for the gear system were used. Using the models, the natural frequency and mode-shape characteristics of spur gears and helical gears were calculated. Two models show that natural frequencies of helical gears were lower than those of spur gears. Mode-shape characteristics of gear pairs by analytical model and some issues of finite element modeling were also discussed. Impact test was used to validate the finite element model.

Integrity Evaluation By IRT Technique And FEM Analysis of Spur Gear (스퍼 기어의 FEM 해석 및 IRT 기법을 적용한 건전성 평가)

  • Roh, Chi-Sung;Jung, Yoon-soo;Lee, Gyung-Il;Kim, Jae-Yeol
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.113-118
    • /
    • 2016
  • As an economic, high quality, and highly reliable gear with low noise and low vibration is demanded, an overall finite element analysis regarding a gear is required. Also, an infrared thermography test, which is a quantitative testing technique, is demanded for safety and longer lifespan of gear products. In order to manufacture a gear product or to determine safety of a gear being used, it is necessary to precisely determine ingredients of a material constituting a gear and detect any internal defect. This study aims to realize a design that minimizes the spur gear displacement with respect to power during its rotation and ensures the spur gear control capacity by using a 3D model and the midasNFX program. This facilitates the assessment of the possibility of cracking by evaluating the stress intensity and focusing on the integrity of the spur gear. We prepare the specimen of the spur gear based on the possibility of cranking as per the result of the structural interpretation from an infrared ray thermal measuring technique. After cooling the spur gear, we perform experiments using thermography and halogen lamps and analyze the temperature data according to the results of the experiment. In the experiment which we use thermography after cooling, we find a rise in the temperature of the room. As a result, the defective part show temperatures lower than their surroundings while the normal parts have temperatures higher than the defective parts. Therefore, it possible to precisely identify defective part owing to its low temperature.

A Study on the Modeling of Helical Gear using Automatic Design Program (자동설계 프로그램을 이용한 헬리컬 기어 모델링에 관한 연구)

  • 김민주;이승수;박정보;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.591-594
    • /
    • 2002
  • In this study, we develop automatic design program, which create 3D model of spur gear and helical gear used VisualLISP and create helical gear in the CATIA using 2D profile of gear. This model become the standard models which give not only in itself mold information but also compare processed product with measuring date. Spur gear require mathematical examination of involute curve and trocoidal fillet curve. Automatic design program, which have a mathematical development create the profile of spur gear.

  • PDF

Improvement of fatigue resistance of the miniature gear by controlling holding time of temperature in the hot powder extrusion process (분말 압출 공정에서 온도 유지시간 제어를 통한 미세기어의 내피로성 향상 연구)

  • Kim, J.W.;Lee, K.H.;Hwang, D.W.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.449-452
    • /
    • 2009
  • This paper was designed to fabricate the miniature spur gear with pitch circle of 1.8 by hot extrusion process of mechanically alloyed Zn-22wt%Al powder at various temperature. The mechanical alloying was preformed for ball milled times of 8h, 16h and 32h by the planetary ball milling. Mechanically alloyed powders were compacted cylindrical performs. Extrusions of the miniature spur gear using the alloyed powder were carried out at different extrusion temperatures. The extruded spur gear was sintered for 2h at $350^{\circ}C$ in argon atmosphere. The friction between the die and the powdered billet and the internally different density due to complex product shape cause the internal crack. To overcome the mentioned problems, high dimensional accuracy at cross section of the spur gear and uniform Vickers hardness could be obtained by graphite lubricant and controlling holding time.

  • PDF