• Title/Summary/Keyword: springback simulation

Search Result 67, Processing Time 0.019 seconds

Springback Prediction of Friction Stir Welded DP590 Steel Sheet Considering Permanent Softening Behavior (영구연화거동을 고려한 마찰교반용접(FSW)된 DP590 강판의 탄성복원 예측)

  • Kim, J.;Lee, W.;Chung, K.H.;Park, T.;Kim, D.G.;Kim, Chong-Min;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.329-335
    • /
    • 2009
  • In order to better predict the springback for friction stir welded DP590 steel sheet, the combined isotropic-kinematic hardening was formulated with considering the permanent softening behavior during reverse loading. As for yield function, the non-quadratic anisotropic yield function, Yld2000-2d, was used under plane stress condition. For the verification purposes, comparisons of simulation and experiments were performed here for the unconstrained cylindrical bending, the 2-D draw bending tests. For two applications, simulations showed good agreements with experiments.

Optimization of Design Planning by Using the Spring Back Simulation of Auto Panels (스프링백 전산모사를 이용한 자동차 판넬의 설계공법 최적화)

  • Park, I.C.;Kim, Y.J.;Park, Y.C.;Lee, J.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.164-171
    • /
    • 2006
  • The die development of the high-strength steel sheet is very different with that of the common steel sheet. Especially, the springback problem of the high-strength steel is serious in the stamping process. This paper showed the optimized die development of the high-strength steel sheet which was based on the experimental measured and simulated springback auto panel stamping process.

Optimization of Design Planning with Tool Simulation (시뮬레이션 설계공법의 최적화)

  • Lee J. M.;Park I. C.;Kim Y. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.305-311
    • /
    • 2005
  • The die development of the high-strength steel sheet has big difference on the formability compared with the general panels. Especially, the springback after stamping of the high-strength steel sheets shows big problem. In this study, for the die development of the high-strength steel sheets, write about examples reducing the lead time and the expense of the die development after CAD modification with the result of the springback analysis after finding the best design planning as several times stamping analysis.

  • PDF

Investigation of the Prediction Accuracy for the Stamping CAE of Thin-walled Automotive Products (고강도강 차체 박판부품 프레스성형 CAE의 예측 정확도 고찰)

  • Jung, D.G.;Kim, S.H.;Rho, J.D.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.446-452
    • /
    • 2014
  • In the current study finite element forming analysis is performed to understand the final geometric accuracy limitations for the stamping of an automotive S-rail from four different steel sheets having tensile strengths of 340MPa, 440MPa, 590MPa and 780MPa. Comparisons between the analysis and the experiments for both springback and formability as measured by the amount of edge draw-in and the thickness distribution were conducted. The springback modes were classified according to a scheme proposed in the current investigation and the error was calculated using the normalized root mean square error method. While the analysis results show fairly good agreement with the experimental data for deformation and formability, the simulation accuracy is lower for predicting wall curl, camber and section twist as the UTS of steel sheet increases.

Application of Springback Analysis in the Development of a Reinforce Center Pillar Stamping Die (고강도강 Reinforce Center Pillar의 스프링백 해석)

  • Kim, K.T.;Kim, S.H.;Yoo, K.H.;Lee, C.W.;Shim, H.B.
    • Transactions of Materials Processing
    • /
    • v.23 no.5
    • /
    • pp.297-302
    • /
    • 2014
  • The current paper introduces work that was conducted during the development of a stamping die for a reinforce center pillar made from high strength steel. In the current study, the Bauschinger effect on the springback analysis was studied by comparing simulation results with real panels, which are currently in production. For a complicated part shape, quantitative measurements of the deformed shape are not easy in general to obtain. An adjustment procedure of the shape data for some chosen sections has been suggested to improve the accuracy of the quantitative measurements. The results show that the kinematic hardening model provides more accurate results.

Prediction of Dimensions of Cold Forgings Considering Springback of Material and Elastic Deformation of Die (소재의 탄성회복과 금형의 탄성변형을 고려한 냉간단조품의 치수 예측)

  • Jun B. Y.;Kang S. M.;Park J.M.;Lee M. C.;Park R. H.;Joun M. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.423-431
    • /
    • 2005
  • In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.

Springback Minimization using Bottoming in Al Can Deep Drawing Process (알루미늄 캔 딥드로잉에서 Bottoming을 이용한 스프링백 최소화)

  • Park, Sang-Min;Lee, Sa-Rang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.302-307
    • /
    • 2016
  • The technology of multistage deep drawing has been widely applied in the metal forming industry, in order to reduce both the manufacturing cost and time. A battery can used for mobile phone production is a well-known example of multistage deep drawing. It is very difficult to manufacture a battery can, however, because of its large thickness to height aspect ratio. Furthermore, the production of the final parts may result in assembly failure due to springback after multistage deep drawing. In industry, empirical methods such as over bending, corner setting and ironing have been used to reduce springback. In this study, a bottoming approach using the finite element method is proposed as a practical and scientific method of reducing springback. Bottoming induces compression stress in the deformed blank at the final stroke of the punch and, thus, has the effect of reducing springback. Different cases of the bottoming process are studied using the finite element program, DYNAFORM, to determine the optimal die design. The results of the springback simulation after bottoming were found to be in good agreement with the experimental results. In conclusion, the proposed bottoming method is expected to be widely used as a practical method of reducing springback in industry.

Numerical Modeling for Cumulative Impact of Automotive Bumper (자동차 범퍼의 누적 충격 평가)

  • Kim, Heon-Young;Choi, Jong-Gil;Kim, Jung-Min;Lee, Kang-Wook;Yeo, Tae-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.29-34
    • /
    • 2007
  • Numerical analyses are carried out to evaluate the cumulative impact damage of an automotive front end bumper under the low speed crash events(CMVSS215) by using explicit code. Results of first impact simulation, which are deformed shape, thickness, stress tensors and strain tensors, are used as the initial conditions for a next impact simulation. Between the events, the residual vibration is damped out by using nodal damping, and then recovery after each event is evaluated by several methods, one of which is a springback analysis with implicite finite element analysis code. The coupled analysis scheme for the evaluation of cumulative impact damage is verified through the comparison with test results.

Finite Element Approach to Prediction of Dimensions of Cold Forgings (유한요소법을 이용한 냉간단조품의 치수 예측)

  • Jun B. Y.;Kang S. M.;Park J. M.;Lee M. C.;Park R. H.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.192-198
    • /
    • 2005
  • In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load Is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.

  • PDF