• 제목/요약/키워드: spring-layer model

Search Result 75, Processing Time 0.029 seconds

The Analysis of the Nocturnal Ozone Variations over Kangreung and Wonju (강릉과 원주지역의 야간 오존 변화에 대한 분석)

  • Kim, Hyun-Sook;Lee, Hyun-Jin;Kim, Jae-Hwan
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.474-483
    • /
    • 2004
  • This paper analyzed the characteristics of daily ozone variations over Kangreung and Wonju. It was found that the diurnal cycle of ozone over Wonju has a primary ozone peak in the afternoon and a minimum around sunrise, which is a typical diurnal ozone cycle observable in the urban area. However, the cycle over Kangreung shows a primary peak in the afternoon and secondary peak around 3 a.m. The amounts of ozone in the secondary peak is occasionally higher than that in the primary peak. This nocturnal ozone peak is frequently observed year-round, and the highest frequency and extent are observed in spring. The possible cause of this nocturnal ozone increase was investigated using meteorological parameters and the HYSPLIT trajectory model. It was found that the nocturnal ozone peak is highly correlated with strong wind speed, which has led to positive temperature anomaly. The trajectory model revealed that when the secondary peak occurred, the air was originated from the west and a sinking motion subsequently followed. These findings suggested that when the westerly wind is strongest in spring, the polluted airs from urban areas are transported to the upper boundary layer over Kangreung area. In the case of strong wind during the night, nocturnal ozone peaks were produced by active vertical mixing between lower boundary and upper boundary layers.

Estimation of Applicability of Empirical Design Procedure for Predicting Seismic Response of Buried Gas Pipelines through 3D Time-history Analysis (3차원 시간이력해석을 통한 매설가스배관 종방향 지진응답 예측을 위한 경험적 설계법의 적용성 평가)

  • Kwak, Hyungjoo;Park, Duhee;Lee, Jangguen;Kang, Jaemo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.53-68
    • /
    • 2015
  • Longitudinal strain is an important component of seismic design for buried pipelines. A design procedure which determines the wavelength from site natural period and shear wave velocity of the soil layer and closed-form solutions of pipelines under a harmonic motion is typically used in design. However, the applicability of the procedure has not yet been thoroughly investigated. In this paper, displacement-time histories extracted from 1D site response analyses are used in 3D shell-spring model to accurately predict the response of pipelines. The results are closely compared to those from the design procedure. The area of interest is East Siberia. Performing a site response analysis to determine site specific displacement time history is highlighted. The site natural period may be used to predict the predominant period of the acceleration time history, but cannot be used to estimate the predominant period of the displacement time history. If an accurate estimate of the predominant period of the displacement time history is provided, it is demonstrated that the design equation can be successfully used to predict the response of pipelines.

Development of Land Surface Model for Soyang river basin (소양강댐 유역에 대한 지표수문모형의 구축)

  • Lee, Jaehyeon;Cho, Huidae;Choi, Minha;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.837-847
    • /
    • 2017
  • Land Surface Model (LSM) was developed for the Soyang river basin located in Korean Peninsula to clarify the spatio-temporal variability of hydrological weather parameters. Variable Infiltration Capacity (VIC) model was used as a LSM. The spatial resolution of the model was 10 km and the time resolution was 1 day. Based on the daily flow data from 2007 to 2010, the 7 parameters of the model were calibrated using the Isolated Particle Swarm Optimization algorithm and the model was verified using the daily flow data from 2011 to 2014. The model showed a Nash-Sutcliffe Coefficient of 0.90 and a correlation coefficient of 0.95 for both calibration and validation periods. The hydrometeorological variables estimated for the Soyang river basin reflected well the seasonal characteristics of summer rainfall concentration, the change of short and shortwave radiation due to temperature change, the change of surface temperature, the evaporation and vegetation increase in the cover layer, and the corresponding change in total evapotranspiration. The model soil moisture data was compared with in-situ soil moisture data. The slope of the trend line relating the two data was 1.087 and correlation coefficient was 0.723 for the Spring, Summer and Fall season. The result of this study suggests that the LSM can be used as a powerful tool in developing precise and efficient water resources plans by providing accurate understanding on the spatio-temporal variation of hydrometeorological variables.

Experimental and analytical investigation of steel beams rehabilitated using GFRP sheets

  • El Damatty, A.A.;Abushagur, M.;Youssef, M.A.
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.421-438
    • /
    • 2003
  • Aging and deterioration of existing steel structures necessitate the development of simple and efficient rehabilitation techniques. The current study investigates a methodology to enhance the flexural capacity of steel beams by bonding Glass Fibre Reinforced Plastic (GFRP) sheets to their flanges. A heavy duty adhesive, tested in a previous study is used to bond the steel and the GFRP sheet. In addition to its ease of application, the GFRP sheet provides a protective layer that prevents future corrosion of the steel section. The study reports the results of bending tests conducted on a W-shaped steel beam before and after rehabilitation using GFRP sheets. Enhancement in the moment capacity of the beam due to bonding GFRP sheet is determined from the test results. A closed form analytical model that can predict the yield moment as well as the stresses induced in the adhesive and the GFRP sheets of rehabilitated steel beam is developed. A detailed finite element analysis for the tested specimens is also conducted in this paper. The steel web and flanges as well as the GFRP sheets are simulated using three-dimensional brick elements. The shear and peel stiffness of the adhesive are modeled as equivalent linear spring systems. The analytical and experimental results indicate that a significant enhancement in the ultimate capacity of the steel beam is achieved using the proposed technique. The finite element analysis is employed to describe in detail the profile of stresses and strains that develop in the rehabilitated steel beam.

Free Vibration Analysis of Thick Plate Subjected to In-plane Force on Inhomogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓인 면내력을 받는 후판의 진동해석)

  • Lee, Yong Soo;Kim, Il Jung;Oh, Soog Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.291-298
    • /
    • 2003
  • Recently, as the size of buildings structure becomes large increases, their mat area of building structure is supported or by an inhomogeneous foundation. This paper presents a vibration analysis on thick plates subjected to in-plane force is presented in this paper. The rectangular plate is isotropic, homogeneous, and composed of a linearly elastic material. A vibration analysis of the rectangular thick plate iwas done by useing ofarectangular finite element with 8 nodes and 9 nodes. In this study, the foundation was idealized as a Pasternak foundation model. A Pasternak foundation haves a shear layer on Winkler's model, which idealizes the foundation as a vertical spring. In order tTo analysze the vibration of a plate supported on by an inhomogeneous Pasternak foundation, the value of the Winkler foundation parameter of the central and border zones of the plate awere chosen as WFP1 and WFP2. (fFigure 4.). The Winkler foundation parameter of WFP1 and WFP2 is varied from 0 to 10, $10^2$, and $10^3$ and the shear foundation parameters is were 0, 5, and 10. The ratio of the in-plane force to the critical load iwas applied as 0.4 to 0.8

Hysteresis Loops, Critical Fields and Energy Products for Exchange-spring Hard/soft/hard Trilayers

  • Chen, B.Z.;Yan, S.;Ju, Y.Z.;Zhao, G.P.;Zhang, X.C.;Yue, M.;Xia, J.
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.31-39
    • /
    • 2015
  • Macroscopic hysteresis loops and microscopic magnetic moment distributions have been determined by a three-dimensional (3D) model for exchange-coupled Sm-Co/${\alpha}-Fe$/Sm-Co trilayers with in-plane collinear easy axes. These results are carefully compared with the popular one-dimensional (1D) micromagnetic models and recent experimental data. It is found that the results obtained from the two methods match very well, especially for the remanence and coercivity, justifying the calculations. Both nucleation and coercive fields decrease monotonically as the soft layer thickness $L^s$ increases while the largest maximum energy product (roughly 50 MGOe) occurs when the thicknesses of hard and soft layers are 5 nm and 15 nm, respectively. Moreover, the calculated angular distributions in the thickness direction for the magnetic moments are similar. Nevertheless, the calculated nucleation and pinning fields as well as the energy products by 3D OOMMF are systematically smaller than those given by the 1D model, due mainly to the stray fields at the corners of the films. These demagnetization fields help the magnetic moments at the corners to deviate from the previous saturation state and facilitate the nucleation. Such an effect enhances as $L^s$ increases. When the thicknesses of hard and soft layers are 10 nm and 20 nm, respectively, the pinning field difference is as large as 30%, while the nucleation fields have opposite signs.

Estimation of the Spring and Summer Net Community Production in the Ulleung Basin using Machine Learning Methods (기계학습법을 이용한 동해 울릉분지의 봄과 여름 순군집생산 추정)

  • DOSHIK HAHM;INHEE LEE;MINKI CHOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • The southwestern part of the East Sea is known to have a high primary productivity compared to those in the northern and eastern parts, which is attributed to nutrients supplies either by Tsushima Warm Current or by coastal upwelling. However, research on the biological pump in this area is limited. We developed machine learning models to estimate net community production (NCP), a measure of biological pump, with high spatial and time scales of 4 km and 8 days, respectively. The models were fed with the input parameters of sea surface temperature, chlorophyll-a, mixed layer depths, and photosynthetically active radiation and trained with observed NCP derived from high resolution measurements of surface O2/Ar. The root mean square error between the predicted values by the best performing machine model and the observed NCP was 6 mmol O2 m-2 d-1, corresponding to 15% of the average of observed NCP. The NCP in the central part of the Ulleung Basin was highest in March at 49 mmol O2 m-2 d-1 and lowest in June and July at 18 mmol O2 m-2 d-1. These seasonal variations were similar to the vertical nitrate flux based on the 3He gas exchange rate and to the particulate organic carbon flux estimated by the 234Th disequilibrium method. To expand this method, which produces NCP estimate for spring and summer, to autumn and winter, it is necessary to devise a way to correct bias in NCP by the entrainment of subsurface waters during the seasons.

Characterization of Aerosol Concentration during Severe Asian Dust Period at Busan, Korea in 20 March 2010 (2010년 3월 20일 부산지역에 발생한 극심한 황사의 에어로솔 농도 분포 특성)

  • Jung, Woon-Seon;Park, Sung-Hwa;Lee, Dong-In;Kang, Deok-Du;Kim, Dongchul
    • Journal of Environmental Science International
    • /
    • v.23 no.2
    • /
    • pp.275-289
    • /
    • 2014
  • Asian dust (or yellow sand) occurring mainly in spring in East Asia is affected by the distribution of weather systems. This study was performed to investigate the characteristics of suspended particulate for Asian dust at Busan, Korea in 20 March 2010, which was one of the extreme case for the last 10 years. There was used the data of weather chart, satellite, automatic weather system (AWS), $PM_{10}$, laser particle counter (LPC), and backward trajectories model. In synoptically, the high pressure was located in the northwestern part and low pressure was located in the northeastern part of Korea. The strong westerly winds from surface to upper layer makes it possible to move air masses rapidly. Air masses passing through Gobi Desert in Mongolia and Inner Mongolia plateau covered the entire Korean peninsula. As the results of aerosol analysis, $PM_{10}$ concentration at Gudeok mountain in Busan was recorded $2,344{\mu}g/m^3$ in 2300 LST 20 March 2010 and their concentration was markedly increased at coarse mode particle. In surface condition, westerly wind about 3 ~ 5 m/s was dominant and small particles of $0.3{\sim}0.5{\mu}m$ were distributed on the whole. In heavy metal components analysis, the elements from the land was predominated.

Infrared Spectral Signatures of Dust by Ground-based FT-IR and Space-borne AIRS (지상 및 위성 고분해 적외스펙트럼 센서에서 관측된 황사 특성)

  • Lee, Byung-Il;Sohn, Eun-Ha;Ou, Mi-Lim;Kim, Yoon-Jae
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • The intensive dust observation experiment has been performed at Korea Global Atmosphere Watch Center (KGAW) in Anmyeon, Korea during each spring season from 2007 to 2009. Downward and upward hyper-spectral spectrums over the dust condition were measured to understand the hyper-spectral properties of Asian dust using both ground-based Fourier Transform Infrared Spectroscopy (FT-IR) and space-borne AIRS/Aqua. To understand the impact of the Asian dust, a Line-by-Line radiative transfer model runs to calculate the high resolution infrared spectrum over the wave number range of $500-500cm^{-1}$. Furthermore, the radiosonde, a $PM_{10}$ Sampler, a Micro Pulse Lidar (MPL), and an Aerodynamic Particle Sizer (APS) are used to understand the vertical profile of temperature and humidity and the properties of Asian dust like concentration, altitude of dust layer, and size distribution. In this study, we found the Asian dust distributed from surface up to 3-4 km and volume concentration is increased at the size range between 2 and $8{\mu}m$ The observed dust spectrums are larger than the calculated clear sky spectrums by 15~60K for downward and lower by around 2~6K for upward in the wave number range of $800-1200cm^{-1}$. For the characteristics of the spectrum during the Asian dust, the downward spectrum is revealed a positive slope for $800-1000cm^{-1}$ region and negative slope over $1100-1200cm^{-1}$ region. In the upward spectrum, slopes are opposed to the downward one. It is inferred that the difference between measured and calculated spectrum is mostly due to the contribution of emission and/or absorption of the dust particles by the aerosol amount, size distribution, altitude, and composition.

Airborne Suspended Particulates Concentration and Cancer Risk Assessment of Polycyclic organic matter in Seoul (서울시 대기부유분진의 농도와 다환방향족 유기물질에 의한 발암 위해성)

  • Park, Seoung-Eun;Chung, Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.4
    • /
    • pp.247-256
    • /
    • 1992
  • Airborne suspended particulates were collected at Shinchon by a high volume cascade impactor from Sep. 1990 to Aug. 1991. Organic matter was extracted from particulates and fractionated by liquid-liquid extraction and thin layer chromatography. Substances in the PAHs and nitroarenes'subfraction of neutral fraction were determined by capillary gas chromatography. Based on unit risk estimates by multi-stage model of benzo[a]pyrene and the results of exposure estimates, cancer risk was assessed. The annual average concentration of total suspended particulates was 201.77g/$m^3$. The percentage of fine particulates was 57.40. The concentration of total suspended particulates showed seasonal variations and was high in winter and spring. The average concentration of extractable organic matter was 8.12g/$m^3$. In all, 21 PAHs were identified and quantified. The annual concentration of fluoranthene was 2.38ng/$m^3$, and that was the highest value of all PAHs. A carcinogenic compound, benzo[a]pyrene, was at a concentration of 1.84ng/$m^3$. All the 10 nitroarenes were also identified and quantified. The major nitroarene in the Shinchon area was 2,7-dinitrofluorene. The annual concentration of 1-nitropyrene was 1.56ng/$m^3$. Concentrations of PAHs and nitroarenes were high in winter and low in summer. The life time excess risk estimates of benzo[a]pyrene was calculated as 0.96 persons/a million population in this experiment. In the rank of relative potenties, carcinogenic effects of the other PAHs were calculated as 0.004-0.108 persons/a million population.

  • PDF