• 제목/요약/키워드: spring mechanism

검색결과 344건 처리시간 0.027초

A Study on the Fluctuation of Bottom Cold Water in the Western Channel of Korea Strait

  • Jong-Hwui Yun;Kyu-Dae Cho
    • 한국항해학회지
    • /
    • 제21권4호
    • /
    • pp.39-47
    • /
    • 1997
  • We researched the mechanism on th flucturain of Bottom Cold Water in the western channel of Korea Strait, using 13 years(1981~1933) oceanographic data of FRDA. The bottom cold water in the western channel appears more often in summer and fall than in winter and spring, and its year-to-year variation of temperature is very large. Such variation seems to be closely related with the variations of cold waters in the subsurface layer of the southwestern East Sea. According to the longitudinal temperature distribution along the korean southeastern coast, a density difference occurs all the time at the still deepth between the western channel and the southwestern East Sea. Thus, it is inferred that the cold waters would intrude into the western channle form the subsurface layer in the southwestern East Sea as a density-driven current, and it intensity depends upon the density difference.

  • PDF

초소형 VCM 포커싱 액츄에이터 개발 (Development of A Small VCM Focusing Actuator)

  • 신영철;이승엽;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.750-755
    • /
    • 2005
  • This paper proposes a small VCM (Voice coil motor) type actuator using curved suspensions for auto-focusing and zoom motions for mobile information devices. 1'he proposed focusing actuator adopts a nontraditional type of suspension using curved beams in order to extend output displacement within small height restriction. The curved beam is similar to the leaf spring type which is usually used in optical disk drives. In addition, three different materials are considered for the curved suspension model, and Aluminum shows the best dynamic characteristics. The proposed zoom actuator does not use a suspension supporting bobbin but a moving rail and a sloper mechanism by generating rotational force at lens holder. The sensitivity of design parameters on output performance is studied using ANSYS (3D FEM tool). Experiments using a prototype of the proposed actuator model verified the analytical prediction and performance.

  • PDF

Evaluation of a Radical Mechanistic Probe for NADH-dependent Horse Liver Alcohol Dehydrogenase Reactions by Computer Graphics Modeling

  • Chung Sung Kee;Chodosh Daniel F.
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권1호
    • /
    • pp.44-48
    • /
    • 1988
  • The feasibility of the reduction of nortricyclanone (1) as a chemical probe for testing the proposed radical mechanism for NAD-dependent horse liver alcohol dehydrogenase (HLADH) reactions has been examined using computer graphics modeling. The resutls of this study suggest that the radical ring-opening of this probe molecule may involve too substantial a geometry reorganization for the molecule to serve as a chemical probe in detecting the possible presence of the radical intermediates in the HLADH reactions. This result suggests that one should exercise caution in extrapolating results obtained from chemically based radical probes in the solution phase to the topologically constrained systems such as enzyme-substrate reactions.

Simplified nonlinear simulation for composite segmental lining of rectangular shield tunnels

  • Zhao, Huiling;Liu, Xian;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.513-522
    • /
    • 2022
  • Steel-concrete composite segments replacing the conventional reinforced concrete segments can provide the rectangular shield tunnel superiorities on bearing capacity, ductility and economy. A simplified model with high-efficiency on computation is proposed for investigating the nonlinear response of the rectangular tunnel lining composed of composite segments. The simulation model is developed by an assembly of nonlinear fiber beam elements and spring elements to express the transfer mechanism of forces through components of composite segments, and radial joints. The simulation is conducted with the considerations of material nonlinearity and geometric nonlinearity associated with the whole loading process. The validity of the model is evaluated through comparison of the proposed nonlinear simulation with results obtained from the full-scale test of the segmental tunnel lining. Furthermore, a parameter study is conducted by means of the simplified model. The results show that the stiffness of the radial joint at haunch of the ling and the thickness of inner steel plate of segments have remarkable influence on the behaviour of the lining.

A coupled vibration model of double-rod in cross flow for grid-to-rod fretting wear analysis

  • H. Huang;T. Liu;P. Li;Y.R. Yang
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1407-1424
    • /
    • 2024
  • In Pressurized Water Reactors, most of the failed fuel rods are often observed at the periphery of the fuel assembly, especially near the core baffle. The rod vibration-induced fretting wear is a significant failure mechanism strongly correlated with the coolant and support conditions. This paper presents a coupled vibration model of double-rod to predict the grid-to-rod fretting (GTRF) wear. A motion-dependent fluid force model is used to simulate the coolant cross flow, the gap constraints with asymmetric stiffness between spring and dimple on the vibration form, and the fretting wear are discussed. The results show the effect of the coupled vibration on the deterioration of wear, providing a sound theoretical explanation of some failure phenomena observed in the previous experiment. Exploratively, we analyze the impact of the baffle jet on the GTRF wear, which indicates that the high-velocity cross-flow will significantly affect the vibration forms while sharply changing the wear behavior.

Highly Reliable Triboelectric Rotational Energy Scavenger

  • Lee, Younghoon;Lee, Bada;Choi, Dukhyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.397-397
    • /
    • 2016
  • Triboelectric nanogenerators (TENG) can produce power from ambient mechanical sources and have strong points of high output performance, light weight, low cost, and easy manufacturing process. It is expected that TENG can be utilized in the fields of wireless electronics and self-powered devices in the world which pays attention to healthcare and the IoT. In this work, we focus on scavenging ambient rotational energy by using a durably designed TENG. In previous studies regarding harvesting rotation mode energy, the devices were based on sliding mechanism and durability was not considered as a major issue. However friction by rotation causes reliability problems due to wear and tear. Therefore, in this study, we convert rotary motion to linear motion utilizing a cam by which we can then utilize contact-mode TENG and improve device reliability. In order to increase output performance, bumper springs were used below the TENG and the optimum value for the bumper spring constant was analyzed theoretically. Furthermore, the inserting a soft substrate was proposed and its effect on high output was determined to be due to an increase in the contact area. By increasing the number of cam noses, the output frequency was shown to increase linearly. For the purpose of maximum power transfer, the input impedance of the device was determined. Finally, to demonstrate the use of the C-TENG as a direct power source, it was installed on a commercial bicycle wheel and connected to 180 LEDs. In conclusion we present a rotational motion TENG energy scavenger system designed for enhanced durability and optimized output by appropriate choice of spring constants and substrate.

  • PDF

브라운 동력학 시뮬레이션에 의한 미세기공에서 단일한 다가전해질 사슬의 제한확산 연구 (Study on Hindered Diffusion of Single Polyelectrolyte Chain in Micro-Pores by Employing Brownian Dynamics Simulations)

  • 전명석;곽현욱
    • 멤브레인
    • /
    • 제12권4호
    • /
    • pp.207-215
    • /
    • 2002
  • 한정된 미세공간에서의 제한확산(hindered diffusion)은 멤브레인 기공(pore)에서 입자들의 운동에 의해 결정되는 여과 메카니즘을 매우 미세한 수준에서 이해하는데 중요한 현상이다. 구형(spherical) 콜로이드 입자에 비해 보다 복잡한 형태(conformation)인 고분자사슬 구조를 갖는 다가전해질(polyelectrolyte)의 제한확산 거동에는 다양한 인자들이 관련되어 있기 때문에, 이론 접근은 물론 실험적 접근도 한층 어려운 것이 사실이다. 본 연구에서는, 슬릿형 미세기공에 한정되어 있는 단일한 다가전해질(single polyelectrolyte)에 coarse-grained bead spring model과 먼거리(long-range) 정전상호작용(electrostatic interaction)인 Debye-Huckel potential을 적용하여 분자시뮬레이션 기법인 브라운 동력학 모사를 수행하였다. 기공과 다가전해질 사슬(Polyelectrolyte chain)의 주어진 크기에서, 용액의 전해질 이온농도가 감소함에 따른 사슬의 신장(extension)효과는 제한확산계수를 감소시켰고, 기공 벽면의 하전성은 제한확산계수를 더욱 감소시켰다. 이는, 다가전해질 사슬(polyelectrolyte chain)의 입체적 장애(steric hindrance)와 함께 정전반발력이 미세기공에서의 확산이동을 억제함을 의미한다.

알레르기 화분의 특성과 최근 소아에서 잡초류 화분의 감작률 증가 (Characteristics of allergic pollens and the recent increase of sensitization rate to weed pollen in childhood in Korea)

  • 오재원
    • Clinical and Experimental Pediatrics
    • /
    • 제51권4호
    • /
    • pp.355-361
    • /
    • 2008
  • Pollen is very important causing factor for allergy such as allergic rhinitis, allergic conjunctivitis, and asthma, and pollen allergy has a remarkable clinical impact all over Korea. The main pollination period covers about half the year, from spring to autumn, and the distribution of airborne pollen taxa of allergological interest is related to pollen season dynamics. Korean academy of pediatric allergy and respiratory diseases (KAPARD) has evaluated the pollen characteristics and nationwide pollen count for over 10 years since 1997. Airborne particles carrying allergens were collected daily from nationwide 8 stations (Seoul, Guri, Cheongju, Daegu, Kwangju, Busan, Kangneung, and Jeju) by using 7 days-Burkard sampler (Burkard Manufacturing Co Ltd, Hertfordshire, UK) in South Korea (July 1, 1997-June 30, 2007). They were counted and recorded along with the meteorological factors daily. Tree pollen is a major airborne allergen in spring, grass is most common in summer, and weed pollen is major pollen in autumn in Korea. There has two peak seasons for pollen allergy, as summer and autumn. There is some evidence suggesting that the prevalence of allergic diseases in Korea has been on the increase in the past decade. However, recent findings of the phase I and II studies of the international Study of Asthma and Allergies in Childhood (ISAAC) study showed the absence of increases or little changes in prevalence of asthma symptoms and diagnosis rates in Korea, whereas the prevalence of allergic rhinitis and atopic dermatitis were increased. We reported the evidence that sensitization rate to weed pollen has been increased yearly since 1997 in childhood. Climate change and air pollution must be the major causing factors for the increase of pollen counts and sensitization rate to pollen. Climate change makes the plants earlier pollination and persisting pollination longer. In conclusion, data on pollen count and structure in the last few years, the pathogenetic role of pollen and the interaction between pollen and air pollutants with climate change gave new insights into the mechanism of respiratory allergic diseases in Korea.

CNUSAIL-1 큐브위성의 태양돛 개발 및 성능시험 (Development and Performance Test of Solar Sail System for CNUSAIL-1 Cube Satellite)

  • 송수아;김승균;석진영;노진호
    • 한국항공우주학회지
    • /
    • 제44권3호
    • /
    • pp.228-239
    • /
    • 2016
  • CNUSAIL-1은 $4m^2$ 크기의 태양돛을 탑재한 3U 크기의 큐브위성이며, 주 임무는 지구 저궤도에서 태양돛을 성공적으로 전개하고 태양돛을 이용해 Drag Sail을 실현하는 것이다. 또한, 이에 따른 자세와 궤도에 대한 영향을 확인하는 임무를 수행한다. 본 논문에서는 CNUSAIL-1의 태양돛에 사용되는 박막과 붐의 재질과 물성치에 관련된 실험을 수행하며, 이를 통해 태양돛 박막의 반사율/투과율 요구도를 확인하고, 박막과 붐의 인장강도를 측정함으로서 지구 저궤도 환경에서의 돛 전개 시 발생가능 응력에 대한 안전성을 확인한다. 또한, 태양돛의 전개장치를 개발 제작하여 우주환경을 모사한 지상시험을 수행함으로서 태양돛 전개의 가능성을 검증하였으며, 태양돛의 탑재와 접기 방법에 따라 비교 전개하는 실험을 통하여 접기방법을 결정하고, Spiral spring 두께에 따른 전개실험과 각속도 시험을 수행하여 실제 전개 시에 생길 수 있는 위성체에 대한 영향성 등을 살펴보았다.

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables

  • Huang, Zhiwen;Hua, Xugang;Chen, Zhengqing;Niu, Huawei
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.615-626
    • /
    • 2019
  • Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.