• Title/Summary/Keyword: spring load

Search Result 573, Processing Time 0.025 seconds

Development of Optimization Logic for Electric Vehicle with Multiple Axle Power System Based on Vehicle Dynamics (차량 동역학 기반 다축 동력 전기 차량의 부하 최적화 로직 개발)

  • Jeong, Jongryeol;Shin, Changwoo;Lim, Wonsik;Cha, Suk Won;Jang, Myeong Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.8-15
    • /
    • 2013
  • Recently many kinds of electric vehicles have been developed as many governments demand the environmental friendly vehicles. In this paper, study of load optimization for the electric vehicle which has multiple axle power system was conducted. For the analysis of the vehicle which has three or four driving axles, a method based on the geometry and assumptions that considering axles as a spring model and normal forces of the axles are proportional to the displacement of the axles was applied with basic vehicle dynamics. With the developed vehicle analysis technique, algorithm to find the optimal motor operating points was developed. Using this algorithm, it was possible to find the optimization of vehicle load distribution for multiple axles according to the driving cycles. Also, control logic for the vehicle can be developed based on the optimization simulation results.

A Case Study on the Design and Construction of the Pile Bent System (단일현장타설말뚝을 이용한 교량기초의 설계 및 시공 사례)

  • Cho, Sung-Han;Kim, Hyung-Wook;Kim, Zu-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.357-367
    • /
    • 2010
  • In this study, several design and construction cases of the pile bent system for bridges were introduced. The lateral displacement of the pile bent system is larger than the displacement of pile cap system, due to the smaller bending stiffness and the longer unsupported length. So, the analysis of the lateral pile displacement is main factor for the design of pile bent system and superstructure. For the accurate estimation of the pile displacement, an iterative analysis method was developed. The superstructure was analyzed regarding the pile foundation as $6{\times}6$ spring and the substructure was analysed using non-linear load transfer curves (p-y, t-z, q-z curve). And, to verify this analysis method, the estimated displacements are compared with the results of lateral load test. This analysis method is expected to be a viable alternative approach for the design of bridge foundation hereafter.

  • PDF

Structural evaluation of Aspendos (Belkis) Masonry Bridge

  • Turker, Temel
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.419-439
    • /
    • 2014
  • In this study, the structural performance of a seven span masonry arch bridge was evaluated. Investigations were performed on Aspendos (Belkis) Masonry Arch Bridge which was located on road of Aspendos Acropolis City in Antalya, Turkey. The old bridge was constructed in the early of fourth century AD, but it was exposed to the earthquakes in this region and the overloading by the river water. The old bridge was severely damaged and collapsed by probably an earthquake many years ago and a new bridge was then reconstructed on the remains of this old bridge by Seljuk in the 13th century. The bridge has also been affected from overflowing especially in the spring of each year, so some protective measures should be taken for this monumental bridge. Therefore, the structural performance under these loading has to be known. For this purpose, an initial finite element model was developed for the bridge and it was calibrated according to ambient vibration test results. After that, it was analyzed for different load cases such as dead, live, earthquake and overflow. Three load combinations were taken into account by deriving from these load cases. The displacements and the stresses for these combination cases were attained and compared with each other. The structural performance of Aspendos Masonry Arch Bridge was determined by considering the demand-capacity ratio for the tensile stress of the mortar used in Aspendos Masonry Arch Bridge. After these investigations, some concluding remarks and offers were presented at the end of this study.

A Structural Analysis of the Tracked Vehicle (궤도차량의 차체구조해석)

  • Lee, Young-Shin;Choi, Chang;Jun, Byoung-Hee;Oh, Jae-Moon
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.145-155
    • /
    • 1997
  • In this study, static and dynamic transient analysis of tracked vehicle structure with recoil impact load is performed for transient impact and traveling load using ANSYS and ABAQUS FEM codes. When transient impact loads are applied at tracked vehicle, the maximum dynamic Von Mises stress occurs between beam stiffener of upper plate and race ring and stress level is about 390-450 MPa. The results of transient analysis shows similar level and tendency with static stress with dynamic force effect of 1.6. The excessive stresses occur around the race ring for the both cases. When the traveling loads are applied on the tracked vehicle, the maximum Tresca stress occurs around suspension #1 and is about 450 MPa and results of static and nonlinear transient analysis are quite similar.

  • PDF

Parameteric Analysis for Up-lifting force on Slab track of Bridge (교량상 slab궤도의 상향력 민감도분석)

  • Choi, Sung-Ki;Park, Dae-Geun;Han, Sang-Yoon;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1188-1195
    • /
    • 2007
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads, the settlement of supports, and the temperature gradients. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of various load cases, such as the end rotation of the overhang due to the vertical load, the bending of pier due to acceleration/braking force and temperature deviation, the settlement of embankment and pier, the temperature deviation of up-down deck and front-back pier, and the rail deformation due to wheel loads. The analysis of the rail fastener is made to verify the superposed tension forces in the rail fastener due to various load cases, temperature gradients and settlement of supports. The potential critical fasteners with the highest uplift forces are the fastener adjacent to the civil joint. The main influence factors are the geometry of the bridge such as, the beneath length of overhang, relative position of bridge bearing and fastener, deflection of bridge and the vertical spring stiffness of the fastener.

  • PDF

Numerical Simulation on the Response of Moored Semi-submersible Under Ice Load (유빙 하중을 받는 계류된 반잠수식 시추선의 응답해석)

  • Kim, Jeong-Hwan;Kim, Yooil
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.177-183
    • /
    • 2018
  • This study simulated ice load and the motion response of a moored semi-submersible rig in pack-ice conditions using a finite element method. Ice flows of random size and shape were modeled, and interactions for ice-sea, ice-structure, ice-ice were simulated using a simplified method. Parameters for the simplified method such as drag force coefficient and the pressure-penetration relation were obtained based on the result of detailed analysis using the coupled Eulerian-Lagrangian method. The mooring lines were modeled by spring elements based on their stiffness. As a result of the simulation over 1,400 seconds, the force and motion response of the rig were obtained and validated using discrete elements and compared with the results found by the Krylov State Research Centre.

Evaluating the accuracy of a new nonlinear reinforced concrete beam-column element comprising joint flexibility

  • Izadpanah, Mehdi;Habibi, AliReza
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.525-535
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Buckling analysis of embedded laminated plates with agglomerated CNT-reinforced composite layers using FSDT and DQM

  • Shokravi, Maryam
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.327-346
    • /
    • 2017
  • Laminated plates have many applications in different industrials. Buckling analysis of these structures with the nano-scale reinforcement has not investigated yet. However, buckling analysis of embedded laminated plates with nanocomposite layers is studied in this paper. Considering the single-walled carbon nanotubes (SWCNTs) as reinforcement of layers, SWCNTs agglomeration effects and nonlinear analysis using numerical method are the main contributions of this paper. Mori-Tanaka model is applied for obtaining the equivalent material properties of structure and considering agglomeration effects. The elastic medium is simulated by spring and shear constants. Based on first order shear deformation theory (FSDT), the governing equations are derived based on energy method and Hamilton's principle. Differential quadrature method (DQM) is used for calculating the buckling load of system. The effects of different parameters such as the volume percent of SWCNTs, SWCNTs agglomeration, number of layers, orientation angle of layers, elastic medium, boundary conditions and axial mode number of plate on the buckling of the structure are shown. Results indicate that increasing volume percent of SWCNTs increases the buckling load of the plate. Furthermore, considering agglomeration effects decreases the buckling load of system. In addition, it is found that the present results have good agreement with other works.

Parametric Analysis in Dynamic Characteristics of Railway Track due to Travelling Vehicle (주행차량에 의한 궤도 동적?성의 매개변수 분석)

  • Kim Sang-Hyo;Lee Yong-Seon;Cho Kwang-Il
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.337-342
    • /
    • 2003
  • The dynamic load effects are conveyed to the railway bridges through tracks which are generated by moving trains The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges containing the track system. However, the track effects have been neglected or simplified by spring elements in the most studies since it is quite complex to consider the track systems in the dynamic analysis models of railway bridges. In this study, track system on railway bridges is modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. In addition, this program is developed with the precise 20-car model and a continuous PSC(prestressed concrete) box girder bridge, which is the main bridge type of Korea Train express(KTX). Three-dimensional elements are used for both. The dynamic response of railway bridges is found to be affected depending on whether the track model is considered or not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response is decreased remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge.

  • PDF

The Dynamics Responses of Railway Bridges Considering the Track Model (궤도모형에 따른 철도교량의 동적응답분석)

  • Kim, Sang-Hyo;Lee, Yong-Seon;Jung, Jun;Lee, Jun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.715-720
    • /
    • 2002
  • The dynamic load effects, generated by moving trains, are transferred to the railway bridges through tracks. The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges including the track system. However, the track models have been neglected or simplified by spring elements in the most studies since it is quite complicated to consider the track systems in the dynamic analysis models of railway bridges. In this study track system on railway bridges are modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. A 40m simply supported prestressed concrete box-girder system adopted for high-speed railway bridges are modeled for simulation works. The train models are composed of 20 cars for KTX. The dynamic response of railway bridges are found to be affected depending on whether the track model is considered for not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response decreases remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge, especially for KTX trains.

  • PDF