• 제목/요약/키워드: spring bloom

검색결과 101건 처리시간 0.026초

The Chlorophyll Concentration in the Southwestern East Sea Observed by Coastal Zone Color Scanner (CZCS)

  • Lee Dong-Kyu;Son Seung-Hyun
    • Fisheries and Aquatic Sciences
    • /
    • 제3권1호
    • /
    • pp.8-13
    • /
    • 2000
  • Monthly mean chlorophyll concentration in the East Sea was estimated from the ocean color observed by the Coastal Zone Color Scanner (CZCS) on Nimbus-7 satellite which had performed various remote sensing missions from 1979 to 1986. The areas of high chlorophyll concentration were found in the sea between Siberia coast and Sakhalin Island, in the Donghan Bay and in the Ulleung Basin. In the southwestern East Sea, especially in the area near Ulleung Island, the yearly maximum chlorophyll concentration occurred in December. The chlorophyll concentration in Ulleung Basin in December was about two times higher than during spring bloom in April. The early winter bloom occurred in the warm side of the front that was formed between warm water from the East China Sea and nutrition rich cold water from the northern East Sea.

  • PDF

A study on the algal growth-related water quality of the Sangsa lake

  • Kim, Jong-Min;Lee, Jong-Chun;Chang, Nam-Ik;Ryu, Seong-Ho;Shin, Dae-Yoon
    • 한국환경생물학회:학술대회논문집
    • /
    • 한국환경생물학회 2004년도 학술대회
    • /
    • pp.27-27
    • /
    • 2004
  • We studied algal growth-related water quality of the Sangsa lake which is the drinking water reservoir for the south-eastern region of Jeonnam province. Peridinium cinctum and several diatomic algal species frequently caused water bloom throughout the lake from early spring to late autumn. With the heaviest predominance of Peridinium cintum in May 2003, COD was 22.7 mg/l in the surface layer. Highly turbid surface water of 15 NTU was also caused by Perdinium bloom. Cyanobacterial growth was effectively prohibited by dominant growth of Peridinium in the Sangsa lake, otherwise confronted with cyanobacterial bloom. Dense algal layer was confined in the upper several meters of the water column above the thermocline, which gives relatively algae-free water in deeper layer suitable for drinking source water supply. Upon collapse of thermocline, water quality of the surface layer was improved while deeper layer was deteriorated. This paper deals with some details of water quality changes with algal growth in the Sangsa lake past two years.

  • PDF

영산강 중류 (승촌보)의 봄철 녹조류 Eudorina elegans 대발생과 봇물 펄스방류에 대한 육수학적 고찰 (Limnological Study on Spring-Bloom of a Green Algae, Eudorina elegans and Weirwater PulsedFlows in the Midstream (Seungchon Weir Pool) of the Yeongsan River, Korea)

  • 신재기;강복규;황순진
    • 생태와환경
    • /
    • 제49권4호
    • /
    • pp.320-333
    • /
    • 2016
  • 본 연구는 2013년 4월 하순~5월 동안에 영산강의 승촌보 상류에서 군체형 녹조류 Eudorina elegans의 단일 종에 의해 유례없이 대발생한 녹조현상의 전개 과정을 모니터링하였다. 영산강은 전형적인 조절 하천으로서 외적 또는 내적 요인에 의한 부영양화가 극도로 심각한 실정이었다. 하수처리수의 과잉 영양염을 기반으로 유속, 일사량 및 수온의 구조적 또는 비구조적 복합 영향에 의한 조류(규조류(겨울), 녹조류(봄~여름) 및 남조류(여름))의 대발생은 뚜렷한 계절적 잠재력으로 상존하였다. 이 중에서 봄철 녹조현상은 E. elegans에 의한 것으로서 그 수준은 최대 $1,000mg\;m^{-3}$(>$50{\times}10^4cells\;mL^{-1}$)을 초과하였고, 발생 초기에 폭증하였다가 시간이 경과하면서 점진적으로 감소하는 양상이 현저하였다. 또한, 간헐적인 강우에 의해 하류로 이송되면서 분포 범위가 급속도로 확대되는 특성을 보였다. 보 구조물의 조작으로 펄스유량을 시험 적용하였으나 근본적인 문제를 해결하는 대응책은 아니었고, 하류 하천에 대한 영향을 고려해야 하는 문제점을 포함하고 있었다. E. elegans 녹조현상은 군체형 운동성 조류의 전형적 특성을 나타내었고, 최종적으로 후속되는 강우사상 (>45 mm)에 의해 소멸되었다.

Spring Phytoplankton Bloom in the Fronts of the East China Sea

  • Son, Seung-Hyun;Yoo, Sin-Jae;Noh, Jae-Hoon
    • Ocean Science Journal
    • /
    • 제41권3호
    • /
    • pp.181-189
    • /
    • 2006
  • Frontal areas between warm and saline waters of the Kuroshio currents and colder and diluted waters of the East China Sea (ECS) influenced by the Changjiang River were identified from the satellite thermal imagery and hydrological data obtained from the Coastal Ocean Process Experiment (COPEX) cruise during the period between March $1^{st}$ and $10^{th}$, 1997. High chlorophyll concentrations appeared in the fronts of the East China Seas with the highest chlorophyll-a concentration in the southwestern area of Jeju Island (${\sim}2.9\;mg/m^3$) and the eastern area of the Changjiang River Mouth (${\sim}2.8\;mg/m^3$). Vertical structures of temperature, salinity and density were similar, showing the fronts between ECS and Kuroshio waters. The water column was well mixed in the shelf waters and was stratified around the fronts. It is inferred that the optimal condition for light utilization and nutrients induced both from the coastal and deep waters enhances the high phytoplankton productivity in the fronts of the ECS. In addition, the high chlorophyll-a in the fronts seems to have been associated with the water column stability as well.

SEASONAL DISTRIBUTION OF CHLOROPHYLL-A CONCENTRATION DEDUCED FROM MODIS OCEAN COLOR DATA IN THE EDDY AREA HYUGA-NADA EAST KYUSHU SEAWATER

  • Winarso, Gathot;Hiroyuki, Kikukawa
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.475-478
    • /
    • 2006
  • Total primary production resulting from the photosynthetic process can be defined as the amount of organic matter produced in a given period of time. It is proportional to the chlorophyll-a (chl-a) values in the surface layer of the ocean. The MODIS board on Aqua satellite measures visible and infrared radiation in 36 wavebands, providing simultaneous images of chl-a concentration and sea surface temperature (SST) in the upper layer of the sea. The seasonal distribution of chl-a concentration during one year from April 2005 to March 2006 was examined. Light has a role of starting the seasonal cycle. The Kuroshio Current in this area induces many oceanographical features affecting to the change of seasonal control. The chl-a concentration is also seasonal, which is low in summer and high in winter. In summer, the meandering of Kuroshio Current induces strong eddies and increases the chl-a concentration. In autumn, the delayed small autumn bloom occurred until last December due to the Kuroshio Current. When the Kuroshio axis moves far from the coast, the coastal water dominates and increases the concentration even in the winter. The spring bloom starts early at the beginning of March and decreases during the spring.

  • PDF

Seasonal Dynamics of Phytoplankton and Environmental Factors around the Chagwi-do off the West Coast of Jeju Island, Korea

  • Affan, Abu;Lee, Joon-Baek;Kim, Jun-Teck;Choi, Young-Chan;Kim, Jong-Man;Myoung, Jung-Goo
    • Ocean Science Journal
    • /
    • 제42권2호
    • /
    • pp.117-127
    • /
    • 2007
  • The dynamics of phytoplankton abundance with seasonal variation in physicochemical conditions were investigated monthly at 10 stations around the Chagwi-do off the west coast of Jeju Island, Korea, including inshore, middle shore, and offshore in the marine ranching are a from September 2004 to November 2005. Water temperature varied from 12.1 to $28.9^{\circ}C$ (average $18.8^{\circ}C$), and salinity from 28.9 to 34.9 psu (average 33.7 psu). The chlorophyll a concentration was $0.02-2.05\;{\mu}g\;L^{-1}$ (average $0.70\;{\mu}g\;L^{-1}$), and the maximum concentration occurred in the bottom layer in April. A total of 294 phytoplankton species belonging to 10 families was identified: 182 Bacillariophyceae, 52 Dinophyceae, 9 Chlorophyceae, 12 Cryptophyceae, 6 Chrysophyceae, 4 Dictyophyceae, 13 Euglenophyceae, 6 Prymnesiophyceae, 5 Prasinophyceae, and 5 Raphidophyceae. The standing crop was $2.21-48.69\times10^4\;cells\;L^{-1}$ (average $9.23\times10^4\;cells\;L^{-1}$), and the maximum occurred in the bottom layer in April. Diatoms were most abundant throughout the year, followed by dinoflagellates and phytoflagellates. A phytoplankton bloom occurred twice: once in spring, peaking in April, and once in autumn, peaking in November. The spring bloom was represented by four Chaetoceros species and Skeletonema costatum; each contributed 10-20% of the total phytoplankton abundance. The autumn bloom comprised dinoflagellates, diatoms, and phytoflagellates, of which dinoflagellates were predominant. Gymnodinium conicum, Prorocentrum micans, and P. triestinum each contributed over 10% of the total phytoplankton abundance.

수화를 형성하는 Mallomonas elongata (Synurophyceae) 의계절적 변동과 증식 특성에 대한온도와 pH의 영향 (Effects of Temperature and pH on Seasonal Changes and Growth Characteristics of a Bloom Forming Mallomonas elongata (Synurophyceae))

  • 이경락;김진희;윤호성;김한순
    • 생태와환경
    • /
    • 제38권4호통권114호
    • /
    • pp.503-509
    • /
    • 2005
  • 작은 부영양 저수지에서 수화를 형성하는 Mallomonas elongata의 계절적 변동(2004년 10월-2005년 9월)과 온도와 pH에 대한 증식 특성을 실험실 배양을 통해 조사하였다. 수온 12-$18^{\circ}C$, pH8.4-9.5의 범위를 나타낸 3월 말에서 4월 초의 짧은 기간 동안 M. elongata의 심한 bloom (최고 17,600 cells $mL^{-1}$이 발생하였다. 이 저수지로부터 분리한 M. elongata의 batch culture를 통한 다양한 온도에 대한 성장 반응은 bloom을 형성 하였을 때의 저수지 수온과 유사한 $15^{\circ}C$ 에서 최대성장률을 나타내었다. 반면 pH에 대한 증식 특성은 bloom 형성기의 저수지 pH 범위 보다 낮은 pH 6에서 최대 성장률을 나타내었다.

농업용저수지의 녹조제어를 위한 수환경 특성과 포식성 천적생물의 분리 및 효과분석 (Property of Water Environment and Evaluation of Zooplankton as Predators for the Control of Algal Bloom in the Agricultural Reservoir)

  • 남귀숙;송영희;이의행;홍대벽;한명수
    • 한국관개배수논문집
    • /
    • 제18권1호
    • /
    • pp.33-43
    • /
    • 2011
  • Jundae reservoir has basin area of 234ha, average depth of 3.77m and total storage of $619{\times}10^3m^3$, and is located in Dangin-gun, Chungcheongnam-do. The water quality of Jundae reservoir exceeded the IV grade of water quality standard as available for irrigation water in COD, TN, TP, Chl-a. COD and Chl-a were higher in spring season, because the algal bloom by phytoplankton increased. And the algal blooms in October by inflow non-point pollution during summer rainy season. The most dominant zooplankton was rotifers during study period at all stations. Dominant species were Keratella cochlearis, Polyarthra spp., and Trichocerca spp. We successfully established 2 isolated clone cultures as predator. One is Rotifer, Euchlanis sp. and another is cladocerans, Bosmina sp. To test the removal rate of 2 cultures against Microcystis aeruginosa, we inoculated Euchlanis sp. and Bosmina sp. separately when the abundance reached at $1.0{\times}10^6$cells/ml. Euchlanis sp. removed M. aeruginosa around 98.9% and Bosmina sp. removed it around 98.4%. They are useful grazers for controling algae blooms, Euchlanis sp. and Bosmina sp. feeding on M. aeruginosa highly.

  • PDF

춘계 금강 하구에서 혼합영양 섬모류인 Myrionecta rubra (=Mesodinium rubrum) 개체군의 단주기 변동 (Semiweekly Variation of Spring Population of a Mixotrophic Ciliate Myrionecta rubra (=Mesodinium rubrum) in Keum River Estuary, Korea)

  • 이원호;명금옥;김형섭;정해진
    • ALGAE
    • /
    • 제20권3호
    • /
    • pp.207-216
    • /
    • 2005
  • Myrionecta rubra, a mixotrophic ciliate, is a cosmopolitan red tide species which is commonly found in neritic and estuarine waters. M. rubra had long been listed as an “nculturable protist”until 2 different laboratory strains were finally established in 2 research groups at the beginning of this century, enabling us to perform initiative investigation into various aspect of the live M. rubra strains (Gustafson et al. 2000; Yih et al. 2004b; Johnson and Stoecker 2005). Field sampling was carried out on high tide at 2 fixed stations around Kunsan Inner Harbor (St.1 near the Estuarine Weir and St.2 off Kunsan Ferry Station) every other day for 4 months from mid-February 2004 to understand detailed figure of the recurrent spring blooms of M. rubra following the onset of the water gates operation of the Keum River Estuarine Weir on August 1994. With its maximum abundance of 272 cells mL$^{-1}$ in St.1, fluctuation pattern of the M. rubra population at the 2 stations was strikingly similar. Notable growth of M. rubra population started on late April, to cause M. rubra red tides during one month from mid-May in which “xceptionally low salinity days”without its red tide were intermittently inserted. High abundance of M. rubra over 50 cells mL$^{-1}$ was recorded at samples with their water temperature and salinity higher than 15${^{\circ}C}$ and 4.0 psu, respectively. During pre-bloom period when salinity fluctuation is moderate and the water temperature is cooler than 15°C, Skeletonema costatum, a chain-forming centric diatom, was most dominant. Cyanobacterial species such as Aphanizomenon flos-aquae and Phormidium sp. replaced other dominant phytoplankters on the days with “xceptionally low salinity”even during the main blooming period of M. rubra. To summarize, M. rubra could form spring blooms in Keum River Estuary when the level of salinity fluctuation was more severe than that for the dominant diatom Skeletonema costatum and milder than that for the predominance by freshwater cyanobacteria. Therefore, optimal control of the scale and frequency of freshwater discharges might lead us to partially modify the fluctuation pattern of M. rubra populations as well as the period of spring blooms by M. rubra in Keum River Estuary. Sampling time interval of 2 days for the present study or daily sampling was concluded to be minimally required for the detailed exploration into the spring blooms by M. rubra populations in estuaries with weirs like Keum River Estuary.

Assessment of the Marine Environment in Masan-Jinhae Bay of Korea in Relation to Algal Blooms

  • 이문옥
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.7-24
    • /
    • 2008
  • Masan-Jinhae Bay, in Korea, is known for its frequent algal bloom outbreaks. This study was conducted in order to examine the environmental characteristics of the area, with the aim of identifying indicators that could be used to speculate about future algal blooms. The water temperatures and salinities in Haengam Bay, one of the small inner bays within Jinhae, appeared to re relatively higher than those in Masan and Jinhae bays, across most seasons. Furthermore, stratification begins to develop in all three regions from spring to summer as a result of the local heating effects and an increase in the efficient from the surrounding land. As a result, anoxic conditions appear near the bottom layer of the bay, leading to the deterioration of water quality, which has been identified as one of the causes of bloom outbreaks. Compared to Haengam and Jinhae bays, concentrations of DIN and DIP were remarkably higher in Masan Bay. However, the mean ratio of DIN to DIP was 3.3$\sim$13.6 in all three regions throughout the year, suggesting that nitrogen can function as a growth-limiting factor for phytoplankton. The results of mathematical models showed that cumulative organic pollutants may be a trigger for direct algal bloom occurrences, since residual tidal currents appeared to be less than $3\;cm\;\cdot\;s^{-1}$. Furthermore, computed DO concentrations in the four small inner bays of Jinhae during the summer appeared to be $3\;cm\;\cdot\;l^{-1}$ indicating a hypoxic state. Likewise, computed Chl-a concentrations turned out to be more than $0.01\;mg\;\cdot\;l^{-1}$, indicating eutrophication across most seasons. Based on the overall results, Masan-Jinhae Bay appeared to possess a very high potential for algal bloom outbreaks at anytime during the year.