• Title/Summary/Keyword: spraying thickness

Search Result 86, Processing Time 0.022 seconds

A Study on the Electrical Conductivity and Electromagnetic Pulse Shielding Characteristics of Metal Sprayed Coating (금속 용사 피막의 전기전도도 및 전자파 차폐 특성에 관한 연구)

  • Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.8-9
    • /
    • 2020
  • In this study, the electrical conductivity and shielding effect were evaluated according to the type of metal and the thickness of Metal sprayed coating. The metals used for the test are Cu, Cu-Ni and Cu-Zn, and the thicknesses were 100, 200, 500 um. Each metal sprayed coating was evaluated for electrical conductivity and electromagnetic shielding effect. When the thickness was 200 ㎛ or more, shielding effect 80 dB or more was satisfied at 1 GHz. However, in the case of Cu-Ni, there is little electrical conductivity at a thickness of 100 um or less due to the generated voids, and electromagnetic wave shielding performance cannot be expected. Therefore, To ensure electromagnetic shielding effect of structures, it is considered that the minimum thickness of metal spraying coating should be 200 um.

  • PDF

Measurement of liquid film thickness distribution on sprayed surfaces (스프레이가 분사되는 표면에서의 액막 두께 분포 측정)

  • Tae Ho Kim;Myung Ho Kim;Hyoung Kyu Cho;Byoung Jae Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.33-38
    • /
    • 2023
  • Spray cooling is a method of cooling high-temperature heating elements by spraying droplets. Recently, spray cooling has been proposed for use in next-generation nuclear reactors. When droplets are sprayed onto the outer wall of a heat exchanger tube, a film boiling occurs on the outer wall. Over time, the outer wall temperature decreases, and a liquid film forms on the outer wall, and the heat exchanger outer wall is subsequently cooled by the liquid film. In this case, the liquid film thickness has a great influence on the heat removal performance. In this study, an experimental study was conducted to measure the liquid film thickness distribution in a droplet spray environment. For this purpose, a method using the electrical conductivity of the liquid was adopted.

Mechanical Properties and Economic Evaluation of Steel Fiber Reinforced Shotcrete (강섬유보강숏크리트의 역학적 특성 및 경제성 평가)

  • 손영현;박우진
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.122-129
    • /
    • 1998
  • A field experiment was performed to analyze the properties of SFRS(steel fiber reinforced shotcrete) against WMRS(wire mesh reinforced shotcrete) with some experimental parameters. The parameters were reinforcing methods(steel fiber and wire mesh), steel fiber contents(0.5%, 0.75%, and 1.0%), silica fume contents(0.0% and 10.0%), spraying thicknesses of layer(10㎝, 8㎝, and 6㎝), and spraying parts(side wall, shoulder, and crown). According to the analyzed results, the mechanical properties of SFRS such as compressive strength, flexural strength, and load-carrying capacity after cracks were improved. And the economic evaluation was also performed on the basis of the required thickness of the layer and other researcher's results for rebound ratios. From the results of this tests, it is found that the traditional WMRS may be substituted by the SFRS in the viewpoint of the economic evaluation as well as the mechanical properties. In additions, the silica fume, even if it is very expensive, can significantly improve the mechanical properties of the shotcrete regardless of mixing with or without the steel fiber.

  • PDF

An Experimental Study to Secure Electromagnetic Pulse Shielding Performance of Concrete Coated by an Arc Metal Spraying Process (아크 금속 용사 공법에 의해 코팅된 콘크리트의 전자기파 차폐 성능 확보를 위한 실험적 연구)

  • Jang, Jong-Min;Jeong, Hwa-Rang;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.519-527
    • /
    • 2021
  • In this study, an electromagnetic pulse shielding effect was obtained by applying the arc metal spraying method to the ordinary concrete. For this study, to evaluate the electrical properties in the thickness of the metal sprayed coating, 8 types of metals(Cu, CuAl, CuNi, CuZn, Al, Zn, ZnAl, AlMg) were sprayed as coatings with a thickness of 100, 200 and 500㎛. The electrical conductivity on the surface was measured with a 4-pin probe, and an electromagnetic wave shielding effect test was performed according to KS. Based on the test results, 200 ㎛ was proposed as an optimal metal coating thickness for electromagnetic pulse shielding, and it was thermally sprayed on a 300×300×100mm concrete specimen to analyze the electromagnetic wave shielding performance. However, in the area of adhesion strength, the maximum was 1.11MPa, which was found to be less than 74% of the target performance.

Numerical Analysis of CO2-Based Rapid Mold Cooling Technology (CO2 기반 금형 급속 냉각기술의 수치해석적 연구 )

  • Jae Hyuk Choi
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.61-66
    • /
    • 2023
  • In this study, we developed a simulation methodology for a technology that rapidly cools molds by directly spraying them with CO2 in its liquefied gaseous state. Initially, a simulation verification process was conducted using ANSYS Fluent's heat transfer analysis based on temperature values measured in prior research experiments, ensuring a comparable temperature could be calculated. Subsequently, the validated analysis method was employed to evaluate design factors that exert the most significant influence on cooling. An evaluation was conducted based on three factors: part thickness, mold thickness, and the melting temperature of material. Using a full factorial design approach, a total of 27 analyses were completed and subsequently calculated through analysis of means. The impact assessment was carried out based on the temperature values at the product's core. The results indicated that the thickness of the mold had the highest influence, while the melting temperature of material had the least.

Thermo mechanical analysis of a ceramic coated piston used in a diesel engine

  • Buyukkaya, Ekrem;Cerit, Muhammet;Coban, Mehmet
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.429-442
    • /
    • 2016
  • The aim of this paper is to determine temperature and stress distributions in a ceramic based on Partially Stabilized Zirconia coated steel piston crown by using plasma spraying for improving performance of a marine diesel engine. Effects of coating constituent and thickness on temperature and stress distributions were investigated including comparisons with results from an uncoated piston by means of finite element method namely ANSYS. Temperature developed at the coated surface is significantly higher than that of the uncoated piston. The maximum stress components occur between bond coat and adjacent ceramic layer. Provided that coating thickness is constant as 0.5 mm, when numbers of layers increase, magnitude of the normal stress decrease about 34.1% on the base metal surface according to uncoated piston, but the base metal surface temperature of the steel piston increase about 13.1%.

fabrication of Ceramic Tape By Ultrasonic Spray (초음파 분무를 이용한 세라믹 테이프의 성형)

  • 윤정한;박양수;심수만;이해원
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.625-631
    • /
    • 1999
  • Ceramic tapes were fabricated by ultrasonically spraying slurries of monodispersed spherical and alumina powders. Effects of slurry compositions on tape forming were investigated. A relatively fast rate of solvent evaporation caused pores and cracks to be formed. A good chemical affinity between solvent and binder gave rise to binder separation resulting in inhomogeneous distribution of binder. Defect-free silica tapes with uniform distribution of particle packing and the binder were obtained from the solvent having a low chemical affinity and a slow evaporation rate and containing appropriate amounts of the binder and the plasticizer. Tape thickness could be controlled by adjusting solids loadings and slurry feed rates. It was possible to fabricate a tape in 15 $\mu\textrm{m}$ thickness from 7 vol% alumina slurry.

  • PDF

Oxidation and Electrical Properties of (LaSr)(CrCo)3Coated STS-430 Steel by Plasma Spraying (플라즈마 스프레이 (LaSr)(CrCo)O3 코팅된 STS-430 합금의 고온 산화 거동 및 전기적 특성)

  • Lee, Chung-Hwan;Lim, Kyeong-Tae;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.185-190
    • /
    • 2009
  • Fe-Cr steels are the most promising candidate for interconnect in solid oxide fuel cells. In this study, an effective, dense and well adherent (LaSr)(CrCo)$O_3$ [LSCC] coating layer was produced onto 430 stainless steel (STS-430) by atmospheric plasma spraying and the oxidation behavior as well as electrical properties of the LSCC coated STS-430 were investigated. A significant oxidation of pristine STS-430 occurred at $800^{\circ}C$ in air environment, leading to the formation of $Cr_2O_3$ and $FeCr_2O_4$ scale layer up to ${\sim}7{\mu}m$ after 1200h, and consequently increased an area specific resistance of $330\;m{\Omega}{\cdot}cm^2$. Although the plasma sprayed LSCC coating contained the characteristic pore network, the coated samples presented apparent advantages in reducing oxidation growth of STS-430, resulting a decrease in oxide scale thickness of ${\sim}1{\mu}m$ at $800^{\circ}C$ after 1200h. The area specific resistance of the LSCC coated STS-430 was much reduced to ${\sim}7\;m{\Omega}{\cdot}cm^2$ after exposure at $800^{\circ}C$ for 1200h, compared to that of the pristine STS-403.

Fabrication and Characterization of Cu-based Amorphous Coatings by Cold Spray Process (저온 분사를 이용한 Cu계 비정질 코팅층의 제조 및 특성 연구)

  • Jung, Dong-jin;Park, Dong-Yong;Lee, Jin Kyu;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.321-327
    • /
    • 2008
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_6$) coating was produced by cold spraying as a new fabrication process. The microstructure and macroscopic properties of amorphous coating layer was investigated and compared with those of cold sprayed pure Cu coating. Amorphous powders were prepared by gas atomization and Al 6061 was used as the substrate plate. X-ray diffraction results showed that Cu based amorphous powder could be successfully deposited by cold spraying without any crystallization. The Cu based amorphous coating layer ($300{\sim}400{\mu}m$ thickness) contained 4.87% porosity. The hardness of Cu based amorphous coating represented $412.8H_v$, which was correspond to 68% of the hardness of injection casted bulk amorphous material. The wear resistance of Cu based amorphous coating was found to be three times higher than that of pure Cu coating. The 3-point bending test results showed that the adhesion strength of Cu based amorphous coating layer was higher than that pure Cu coating. It was also observed that hard Cu base amorphous particle could easily deform soft substrate by particle collisions and thus generated strong adhesion between coating and substrate. However, the amorphous coating layer unexpectedly represented lower corrosion resistance than pure Cu coating, which might be resulted from the higher content of porosity in the cold sprayed amorphous coating.

Enhancing Construction Productivity and Quality Through Waterproofing Equipment Technologies (생산성 및 품질향상을 위한 방수공사의 장비 활용 시공기술)

  • Kim, Han-Sic;Ha, Jung-Soo;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.429-440
    • /
    • 2023
  • This research investigates the deployment of waterproofing technologies in construction, with a specific focus on augmenting worker safety, work environment, and solve the difficulty of securing skilled workers. Implementing liquid waterproofing cement equipment resulted in a remarkable increase in adhesion performance by around 20%, coupled with a twofold acceleration in operational speed. The application of primer spraying apparatus led to a two-fold improvement in both penetration and adhesion performance, concurrently boosting the work speed by approximately the same factor. With urethane spraying equipment, the workload could be reduced to a third for the same layer thickness, adhesion performance enhanced by approximately 1.4 times, and workability improved by about 1.4 to 1.5 times. These findings suggest that such technological interventions can potentially enhance work efficiency, improve the quality of output, and mitigate safety accidents that are commonplace in manual operations. Furthermore, these advancements present promising solutions to the ongoing challenges of sourcing highly-competent workers in the industry.