• Title/Summary/Keyword: spraying method

Search Result 385, Processing Time 0.024 seconds

Residual Characteristic of Chlorpyrifos in Squash and Estimation of Its Residues Before Harvest (애호박 중 Chlorpyrifos의 잔류특성 및 수확전 잔류량 예측)

  • Park, Hyo-Kyoung;Noh, Hyun-Ho;Lee, Kwang-Hun;Lee, Jae-Yun;Park, Young-Soon;Kang, Kyung-Won;Lee, Eun-Young;Yun, Sang-Soon;Jin, Chung-Woo;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.463-470
    • /
    • 2011
  • This study was carried out to survey the residual characteristic of chlorpyrifos and estimate their residues in squash before harvest. The pesticide was sprayed onto the crop at the recommended and its double rates 10 days before the prearranged harvest and sampling was done at 0, 2, 3, 5, 6, 7 and 10 days after spraying. The amounts of the chlorpyrifos residue in the crop was analyzed by chromatographic method. Limit of detection (LOD) of chlorpyrifos was 0.005 mg/kg and its recovery ranged from 95.21 to 102.69%. The initial concentration of chlorpyrifos sprayed with recommended dose exceeded its MRL of 0.1 mg/kg but its concentration was less than its MRL 10 days after application. However its concentration in case of the double dose was over its MRL both immediately and 10 days after application. Biological half-lives of chlorpyrifos sprayed onto squash was 2.5 and 2.9 days at the recommended and double doses, respectively. Ten days later, the residual concentration of chlorpyrifos in squash was decreased substantially. The concentration of chlorpyrifos was estimated in squash at the given day using its regression equations. The estimated concentration of chlorpyrifos in case of application with recommended dose was below its MRL at 10 days after application but its concentration in case of application with double dose was over its MRL at 10 days of the prearranged harvest. The rate of the estimated daily intake (EDI) of chlorpyrifos to its acceptable daily intake (ADI) was 282% right after application but it decreased to less than 18% at 10 days of the prearranged harvest.

Effects of Chitosan, Grain Amino Acid and Wood Vinegar Foliar Spray on the Quality and Storability of Grapes(Campbell Early) (키토산, 곡물아미노산, 목초액의 엽면살포가 포도(Campbell Early)의 품질 및 저장성에 미치는 영향)

  • Ju, In-Ok;Jung, Gi-Tai;Cheong, Seong-Soo;Moon, Young-Hun;Ryu, Jeong;Choi, Joung-Sik
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.119-123
    • /
    • 2007
  • Sprays containing chitosan, grain amino acids, or wood vinegar, were applied to vine leaves of the Campbell Early grape variety, and effects on the quality and storability of grapes were investigated. Weights of grape clusters and individual bemies did not differ significantly from the values seen when traditional agnicultural chemical treatment was used. The percentage of clusters over 300g in weight was, however, higher after spraying with chitosan, grain amino acids, or wood vinegar, than after agricultural chemical treatment, Grape moisture contents, levels of soluble solids, and reducing sugar concentrations, did not differ when the traditional treatment and the newer sparys were compared. Among minerals, the levels of potassium, iron and zinc measured in fresh grapes were increased by the clitosan, grain amino acids, and wood vinegar spray. After 8 weeks of MA storage, reducing sugar levels decreased, and titratable acidities increased, compared to levels measured at the beginning of storage. This was true regardless of the method of vine treatment the hardness of berries decreased slightly over 4-6 weeks of storage, and increased thereafter. The weight losses of grapes were relatively low(0.28-0.35%) on storage after any vine treatment tested. Grapes from vines sprayed with chitosan or grain amino acids showed a lower decay rate than did fruit from vines that had received a traditional agricultural chemical treatment. Sensory evaluation results indicated that the marketability of grapes from vines treated with traditional agricultural chemicals was better than that of grapes from vines sprayed with chitosan, grain amino acids, or wood vinegar.

Development of Lateral Flow Immunofluorescence Assay Applicable to Lung Cancer (폐암 진단에 적용 가능한 측면 유동 면역 형광 분석법 개발)

  • Supianto, Mulya;Lim, Jungmin;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.173-178
    • /
    • 2022
  • A lateral flow immunoassay (LFIA) method using carbon nanodot@silica as a signaling material was developed for analyzing the concentration of retinol-binding protein 4 (RBP4), one of the lung cancer biomarkers. Instead of antibodies mainly used as bioreceptors in nitrocellulose membranes in LFIA for protein detection, aptamers that are more economical, easy to store for a long time, and have strong affinities toward specific target proteins were used. A 5' terminal of biotin-modified aptamer specific to RBP4 was first reacted with neutravidin followed by spraying the mixture on the membrane in order to immobilize the aptamer in a porous membrane by the strong binding affinity between biotin and neutravidin. Carbon nanodot@silica nanoparticles with blue fluorescent signal covalently conjugated to the RBP4 antibody, and RBP4 were injected in a lateral flow manner on to the surface bound aptamer to form a sandwich complex. Surfactant concentrations, ionic strength, and additional blocking reagents were added to the running buffer solution to optimize the fluorescent signal off from the sandwich complex which was correlated to the concentration of RBP4. A 10 mM Tris (pH 7.4) running buffer containing 150 mM NaCl and 0.05% Tween-20 with 0.6 M ethanolamine as a blocking agent showed the optimum assay condition for carbon nanodot@silica-based LFIA. The results indicate that an aptamer, more economical and easier to store for a long time can be used as an alternative immobilizing probe for antibody in a LFIA device which can be used as a point-of-care diagnosis kit for lung cancer diseases.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Prophylactic and therapeutic studies on intestinal giant-cystic disease of the Israel carp caused by Thelophanellus kitauei II. Effects of physical and chemical factors on T. kitauei spores in vitro (향어의 장포자충(Thelohanellus kitauei)증의 예방 및 치료에 관한 기초적 연구 II. 물리화학적 요인이 장포자충 포자에 미치는 영향)

  • Lee, Jae-Gu;Kim, Jong-O;Park, Bae-Geun
    • Parasites, Hosts and Diseases
    • /
    • v.28 no.4
    • /
    • pp.241-252
    • /
    • 1990
  • In a basic attempt to develop the prophylactic and therapeutic measures on intestinal giantcystic disease of the Israel carp, C), prinks carpio nudum, the effects of physical and chemical factors on viability or survival of the spores of Thelchcnellus kiteuei were checked in vitro by means of extrusion test on the polar filament. When the fresh spores suspended with 0.45% and 0.9% scdium chloride solution and distilled water were laid at $5^{\circ}C$ and $28^{\circ}C$ for short terms, the extrusion rates increased until the 3rd day, meanwhile when son;e of them were suspended with Tyrode's solution at $-70^{\circ}C$ the rates increased gradually until the 8th day. Viabilities of the spores suspended with 0.9% saline and added antibiotics to the suspension at $5^{\circ}C$ for long terms lasted for 997 days and 1, 256 days (presumed values) at maximum, respectively. The spores suspended with distilled water at $28^{\circ}C$ for long terms survived 152.4 days, but the spores suspended with Tyrode's solution at $-70^{\circ}C$ for long terms showed almost the same viable pattern as early freezing stages up to 780 days. The spores suspended with Tyrode's solution, frozen at $-70^{\circ}C$ and thawed at $5^{\circ}C$, showed the highest rate of extrusion of the polar filament. In the case of frozen spores, the extrusion rates during heating tend to become higher in accordance with the increase of frozen period, and the critical points of 180 day-frozen spores to be killed were generally 78.5 hr. at $60^{\circ}C$, 23.4 hr. at $70^{\circ}C$, 189.1 min. at $80^{\circ}C$ or 10.5 min. at $90^{\circ}C$. The longer the spores were frozen, the more time was needed for the death of spores after thawing; 20 days-17.4 days, 100 days-33.2 days, and 400 days-37.8 days. The longer the spores were frozen, the more time was needed for the death of spores at a conventional when they were dried air drying condition, 540 days-23.5 days, 160 days-21.0 days, and 20 days-14.4 days. On the other hand, the longer the spores were frozen, the more spores were dead rapidly when they were irradiated with 10W UV-ray; 100 days-26.0 hr, 300 days-21.9 hr, and 540 days-13.9 hr. The time needed for killing 200 days-frozen spores by various disinfectants at 1, 000 ppd was 5.2 min. by calcium oxide, 10.4 min. by potassium permanganate, 27.8 min. by malachite green and 14.3 hr. by formalin. Transient inhibitory effects of the extrusion of the polar filament were observed by various antiprotozoal and antifungal agents in the descending order of ketoconazole. metronidasole and dapsone. The above results presume that full drying, followed by spraying CaO and maintaining sunny condition for a few days on the concrete bottoms of knish farm may be an effective method for the prevention of intestinal giant.cystic disease.

  • PDF