• Title/Summary/Keyword: sprayed-coating

Search Result 327, Processing Time 0.023 seconds

Effect of Ti Intermediate Layer on Properties of HAp Plasma Sprayed Biocompatible Coatings

  • Take, Seisho;Otabe, Tusyoshi;Ohgake, Wataru;Atsumi, Taro
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.51-56
    • /
    • 2020
  • The objective of this study was to improve properties of plasma sprayed HAp layer to titanium substrate by introducing an intermediate layer with two different methods. Before applying Zn doped HAp coating on titanium substrate, an intermediate layer was introduced by titanium plasma spray or titanium anodization. Heat treatments were conducted for some samples after titanium intermediate layer was formed. Zn doped HAp top layer was applied by plasma spraying. Three-point bending test and pull-off adhesion test were performed to determine the adhesion of Zn doped HAp coatings to substrates. Long-term credibility of Zn doped HAp plasma sprayed coatings on titanium was assessed by electrochemical impedance measurements in Hanks' solution. It was found that both titanium plasma sprayed and titanium anodized intermediate layer had excellent credibility. Strong adhesion to the titanium substrate was confirmed after 12 weeks of immersion for coating samples with titanium plasma sprayed intermediate layer. Samples with titanium anodized intermediate layer showed good bending strength. However, they showed relatively poor resistance against pulling off. The thickness of titanium anodized intermediate layer can be controlled much more precisely than that of plasma sprayed one, which is important for practical application.

Plasma-Sprayed $Al_2O_3-SiO_2$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modulus. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing. These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma-sprayed coatings.

  • PDF

Plasma-Sprayed $Al_{2}O_{3}-SiO_{2}$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modules. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$ on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing, These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma- sprayed coatings.

  • PDF

Creation of Diamond/Molybdenum Composite Coating in Open Air

  • Ando, Yasutaka;Tobe, Shogo;Tahara, Hirokazu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1313-1314
    • /
    • 2006
  • For improvement of wear resistance property of atmospheric thermal plasma sprayed molybdenum (Mo) coating, diamond deposition on the atmospheric plasma sprayed molybdenum coating by the combustion flame chemical vapor deposition (CFCVD) has been operated. In this study, to diminish the thermal damage of the substrate during operation, a thermal insulator was equipped between substrate and water-cooled substrate holder. Consequently, diamond particles could be created on the Mo coating without fracture and peeling off. From these results, it was found that this process had a high potential in order to improve wear resistance of thermal sprayed coating.

  • PDF

Wear Characteristics on Friction Velosity and Force of Plasma Sprayed Ceramic Coating Layer (마찰속도와 마찰력의 변화에 따른 세라믹 용사 코팅재의 마모특성)

  • Kim, G.S.;Kim, S.I.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.56-61
    • /
    • 2002
  • This study is to investigate the wear behaviors of thermally sprayed ceramic coating by a pin-on-disk wear testing machine. The test specimens were plasma sprayed TiO2 coating material on carbon steel substrate(S45C) with Ni-4.5%Al alloy bond coating. Wear characteristics, friction coefficient and wear rates, were conducted at the three kinds of loads and velosities. Wear environments were dry and lubrication friction. The friction coefficients of TiO2 coating specimen in dry friction were almost same according to increase the friction velocity. The wear rate increased when the friction force is high. In lubrication friction, the wear hardly occured and friction coefficient was about 0.1. The adhesiveness of TiO2 in lubrication friction is larger than that in dry one.

  • PDF

Study on the Control of the Erosion-Corrosion for Ni-Cr Alloy Sprayed Coating in the Marine Environment (해양환경 중에서 Ni-Cr 용사피복재의 침식-부식 억제에 관한 연구)

  • Lim, U.J.;Lee, S.Y.;Yun, B.D.
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.11 no.2
    • /
    • pp.139-149
    • /
    • 1999
  • Thermal sprayed Ni-Cr alloy coating on the carbon steel was carried out erosion-corrosion test and electrochemical corrosion test in the marine environment. The erosion-corrosion behavior and electrochemical corrosion characteristics of substrate(SS400) and thermal sprayed Ni-Cr coating was investigated. The erosion-corrosion control efficiency of Ni-Cr coating to substrate was also estimated quantitatively. The main results obtained are as follows : 1) The weight loss rate of Ni-Cr coating layer by the erosion-corrosion compared with substrate was smaller. With the lapse of time, the weight loss rate of substrate was linearly increased in $25{\Omega}{\cdot}cm$ solution, but that of Ni-Cr coating became stable. 2) The corrosion potential of substrate became less noble than that of Ni-Cr coating layer, and the corrosion current density of Ni-Cr coating became lower than that of substrate. 3) The control efficiency of erosion-corrosion of Ni-Cr coating compared to substrate became more dull than that of corrosion in $25{\Omega}{\cdot}cm$ and $5000{\Omega}{\cdot}cm$ solution.

  • PDF

Effect of Post-heat Treatment on Fatigue Strength of Thermally-Sprayed Stellite Alloy on Steel (스텔라이트 합금 용사 코팅의 피로 강도에 미치는 후열처리의 영향)

  • Oh Jeong Seong;Komotori Jun;Rhee Chang Kyu
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.106-111
    • /
    • 2005
  • The effect of post-heat treatment on the coating characteristics and the fatigue strength of the gas flame thermally sprayed Stellite alloy coatings on $0.35\%$ carbon steel were investigated. The fatigue fracture surfaces of the heat treated samples were observed using SEM (Scanning Electron Microscopy). For as-sprayed samples, there was considerable scattering in the fatigue life due to the presence of the pores in the coating. After the post-heat treatment to improve the microstructural characteristics of the coating layer, the fatigue strength of the specimens was greatly improved, increasing with increasing the coating thickness. For the specimens with the 0.3mm and 0.5mm thick coating, the fatigue cracks originated in the substrate region just below the interface. On the contrary, for the specimens with the 1.0mm thick coating, they nucleated at the pore within the coating, and the fatigue strength was 2.6 times higher than that of the substrate due to the high fatigue resistance of the coating.

A Study on the Erosion-Corrosion of Sprayed Cu-Ni Alloy Coating in the Marine Environment (해양환경 중에서 Cu-Ni 용사피복재의 침식-부식에 관한 연구)

  • Lee, Sang-Yoel;Lim, Uh-Joh;Yun, Byoung-Du
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.10 no.1
    • /
    • pp.69-78
    • /
    • 1998
  • Thermal sprayed Cu-Ni alloy coating on the carbon steel was carried out impingement erosion-corrosion test and electrochemical corrosion test in the marine environment. The impingement erosion-corrosion behavior and electrochemical corrosion characteristics of substrate(SS400) and thermal sprayed Cu-Ni coating was investigated, and the corrosion control efficiency of Cu-Ni coating to substrate was estimated quantitatively. Main results obtained are as follows : 1) The weight loss rate of Cu-Ni coating layer by the impingement erosion-corrosion compared with substrate was smaller in high specific resistance solution than in low specific resistance solution. 2) The corrosion potential of Cu-Ni coating layer spray coating in the marine environment became more noble than that of substrate. 3) With the lapse of time, corrosion current density of Cu-Ni coating layer became stable, but that of substrate was increased. 4) As the corrosion control efficiency of Cu-Ni coating layer in the marine environment was over 90%, its anti-corrosion characteristics was excellent.

  • PDF

Fundamental Study on Ni-Base Self-Fluxing Alloy Coating by Thermal Spraying(I) - Effect of Splat Behavior of Sprayed Particles on Mechanical Properties of Coating Layer - (Ni-기 자융성합금의 코팅에 관한 기초적 연구(I) - 용사입자의 편평거동이 코팅층의 기계적 특성에 미치는 영향 -)

  • Kim, Y.S.;Kim, H.S.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.70-79
    • /
    • 1997
  • Ni-base self-fluxing alloy powder particles were flame sprayed onto the SS400 mild steel substrate surface. The effects of both substrate temperature and spraying distance on the splat behavior of sprayed particles were examined. The results obtained are summarized as follows: 1) In the splat behavior of Ni-base self-fulxing alloy particles sprayed onto the SS400 mild steel substrate, splashing was observed under the room temperature condition. On the contrary, it showed circular plate pattern in the substrate temperature range over 373K. 2) It was cleared that there was close relationship between mechanical properties of coating layer and splat behavior of sprayed particles. 3) From the experimental results, optimum spraying conditions showed excellent mechanical properties in the case of Ni-base self fluxing alloy sprayed onto the SS400 mild substrate were 473K of substrate temperature and 250mm of spraying distance.

  • PDF

Microstructural Characteristics of Thermally Sprayed WC-Co Coatings (Thermally Sprayed WC-Co 코팅층의 미세조직 및 특성)

  • Kang, Hee-Soo;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • The degree of WC decomposition and hardness of thermally sprayed WC-Co coatings are important factors determining the wear resistance of the coatings. In order to minimize the degree of decomposition and to increase hardness, the effects of processing parameters of high velocity oxyfuel(HVOF) spraying on various characteristics of nanostructured WC-12Co coating have been evaluated by an experimental design method. The HVOF sprayed WC-12Co coatings consisted of various carbide phases including WC, $W_2C$ and $W_3Co_3C$, with a much reduced carbon content. The degree of WC decomposition and decarburization was affected by changing barrel length and spray distance. The hardness of WC-Co coatings was strongly related to droplet temperature at substrate, and increased with increasing fuel addition and/or decreasing spray distance. The effective control of processing parameters was discussed in detail for manufacturing a high performance WC-Co coating.