• Title/Summary/Keyword: spray width

Search Result 114, Processing Time 0.022 seconds

Eco-Friendly Synthesis of Rod-Like Potassium Hexatitanate Particles (친환경 공정에 의한 봉상형 육티탄산칼륨 입자의 제조)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.183-189
    • /
    • 2017
  • Potassium hexatitanate ($K_2Ti_6O_{13}$) with high thermal insulating capacity, good mechanical properties, and excellent chemical stability are promising functional materials in the field of reinforcing material, heat insulating paints and automotive brake linings. In this study, we successfully synthesized rod-shaped potassium hexatitanate ($K_2Ti_6O_{13}$) by aerosol spray drying and post heat treatment as an eco-friendly process. The $KHCO_3-TiO_2$ porous particles were firstly synthesized from a colloidal mixture of $K_2CO_3$ and $TiO_2$ via aerosol spray drying. Size of $KHCO_3-TiO_2$ porous particles was ranged from $1{\mu}m$ to $5{\mu}m$. The porous particles were then heated to fabricate rod-type $K_2Ti_6O_{13}$. The length and width of rod-type composites were affected by temperature and heating time. The length and width of $K_2Ti_6O_{13}$ were increased by 830 nm and 500 nm, respectively, as the reaction temperature and time increased.

Study on the Spray Characteristics in TBI Injector with Low Pressure (저압 TBI용 분사밸브의 분무특성에 관한 연구 (I))

  • 전흥신;임종한;이택희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3179-3186
    • /
    • 1993
  • The study on the spray characteristics of TBI(Throttle Body Injection) injector has been carried out in this paper. The objective of this study is to improve the performance of TBI injector. The increase in the injection pressure and the utilization of assisted air are considered. The spray patten of TBI injector take the hollow-cone shape with $60^{\circ}~70^{\circ}$ spray angle regardless of injection pressure and injection pulse width. SAMD(Sauter Mean Diameter) of water in TBI injector are 510-$550{\mu}m$ and 310-$370{\mu}m$ respectively when injection pressures are $0.75 kgf/cm^{2}$ and $2.8 kgf/cm^{2}$. Then SMD of gasoline is estimated 380~$410{\mu}m$ and 230~$280{\mu}m$ respectively. The improvement of spray characteristics in TBI injector can be obtained with assisted air. If $W_{A}/W_{L}$ was over 0.2, SMD of water can be made under $50{\mu}m$.

Numerical Simulations of the Injection Pressure Effect on the Flow Fields and the Spray Characteristics in Direct Injection Engine (직접분사엔진의 분사압력 변화에 따른 유동장 및 분무특성에 대한 수치해석적 연구)

  • 양희천;정연태;유홍선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2339-2358
    • /
    • 1993
  • Since the rate and completeness of combustion in direct injection engines were controlled by the characteristics of gas flow fields and sprays, an understanding of those was essential to the design of the direct injection engines. In this study the numerical simulations of injection pressure effects on the characteristics of gas flow fields and sprays were preformed using the spray model that could predict the interactions between gas fields and spray droplets. The governing equations were discretized by the finite volume method and the modified k-.epsilon. model which included the compressibility effects due to the compression/expansion of piston was used. The results of the numerical calculation of the spray characteristics in the quiescent environment were compared with the experimental data. There were good agreements between the results of calculation and the experimental data, except in the early stages of the spray. In the motoring condition, the results showed that a substantial air entrainment into the spray volume was emerged and hence the squish motion was relatively unimportant during the fuel injection periods. It was found that as the injection pressure increased, the evaporation rate of droplets was decreased due to the narrow width of spray and the increased number of droplets impinged on the bottom of the piston bowl.

A Visualization of the Spray from Small Liquid-rocket Engine Injector by Dual-mode Phase Doppler Anemometry (이중모드 위상도플러 속도계측기법에 의한 소형 액체로켓엔진 인젝터 분무의 가시화)

  • Jung, Hun;Kim, Jeong-Soo;Bae, Dae-Seok;Kwon, Oh-Boong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.60-65
    • /
    • 2010
  • A focus is given to the breakup behavior of spray droplets issuing from a nonimpinging-type injector. The analysis has been carried out experimentally by means of the dual-mode phase Doppler anemometry (DPDA). Spray characteristic parameters in terms of axial velocity, mean diameter, velocity fluctuation, and span (width of the size distribution) of droplets are measured down the geometric axis of a nozzle orifice and on the plane normal to the spray stream with the injection pressure variations. As the injection pressure increases, the velocity and its fluctuation become higher, whereas the droplet sizes get smaller. It is also shown that the magnitudes of those parameters are smoothed out by dispersion when the droplets move downstream as well as outwardly. The atomization process is significantly influenced by the injection pressure rather than the traveling distance in the experimental condition presented.

A Research of Nozzle Spray System of Vertical Type Etcher (수직형 식각 장비의 노즐 분사 시스템에 대한 연구)

  • Kim, Jum-Young;Joo, Kang-Wo;Yoon, Jong-Kook;Ryu, Sun-Joong;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • The recent PCB (Printed Circuit Board) wet etcher has been needed to process pattern within $20{\mu}m$ width on a $20{\mu}m$ thick board. A previous PCB etcher can be used with multiple points of roller rolls or slips off a board. Also, the damage of the board by contacting the roller increases the friction defects. A vertical type boards transporting process is developed to solve the problems of boards friction and sagging in a horizontal etcher. In this research, CFD (Computational Fluid Dynamics) method is used to design an improved spray nozzle including the critical part of etcher, and establish the design method. Meanwhile, major spray characteristics are expected in diverse nozzle types and variables. Lastly, diverse simulation results are adapted to design an improved nozzle and spray system.

Analysis of Drone Downwash and Droplet Deposition for Improved Aerial Spraying Efficiency in Agriculture (드론 방제 살포 효율 개선을 위한 하향풍 및 액적 퇴적 분포 분석)

  • Lee, Se-Yeon;Park, Jinseon;Lee, Chae-Rin;Choi, Lak-Yeong;Daniel Kehinde Favour;Park, Ji-Yeon;Hong, Se-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.5
    • /
    • pp.51-65
    • /
    • 2024
  • With the advancement of Unmanned Aerial Vehicles (UAV) technology, aerial spraying has been rapidly increasing in the agricultural field. Drones offer many advantages compared to traditional applicators, but they pose challenges such as spray drift risk and spray uniformity. To address these issues, it is essential to understand the characteristics of complex airflow generated by drones and its consequences for the spray performance. This study aims to identify the air velocity distribution of drone downwash and the resulting spray deposition distribution on the ground, ultimately proposing optimized spraying widths and criteria. Experiments were conducted using two agricultural drones with different propeller arrangements under various flight and measurement conditions. The results showed that during hovering, the downward airflow affected the area within a distance of the radius of the blade (R) from the center of the drone. When the drone was flying, the downward airflow was effective up to a distance of 2R. Droplet deposition was concentrated at the center of the drone during hovering. However, during flying, the droplet deposition was more evenly distributed up to the distance of R. The drone downwash and droplet deposition were significantly different during flying compared to the hovering state. At an effective spray width of 3R, the coefficient of variation (CV) was generally less than 16%, indicating a significant improvement in spray uniformity. These findings help optimize effective spraying techniques in drone-based applications.

Experimental Study on the Spray Characteristics of a Fuel Injector for a Non-Road Small Engine (노외용 소형엔진 인젝터의 분무특성에 대한 실험적 연구)

  • Yeom, Kyoung-Min;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2005-2010
    • /
    • 2011
  • Since recently exhaust gas regulation for a non-road small engine as well as commercial vehicle engine has been enforced, a carburettor of a small engine should be replaced by an electronic fuel injection system. In this study, the spray characteristics of the 400cc gasoline small engine injector has been experimentally analyzed. Based on the experimental results, suitable injector for the small engine has been selected. Through the test rig measuring spray mass distribution, fuel distribution characteristics of 3 hole- and 6 hole-injector has been analyzed. Through the visualization equipment, injector spray angle, penetration length and spray width have been measured and analyzed. Considering spray characteristics and stability, 6 hole-injector is selected for the 400cc gasoline small engine.

Ultrasonic Sensor Controlled Sprayer for Variable Rate Liner Applications (초음파센서를 이용한 변량제어 스프레이어)

  • Jeon, Hong-Young;Zhu, Heping
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • An experimental variable rate nursery sprayer was developed to adjust application rates for canopy volume in real time. The sprayer consisted of two vertical booms integrated with ultrasonic sensors, and variable rate nozzles coupled with pulse width modulation (PMW) based solenoid valves. A custom-designed microcontroller instructed the sensors to detect canopy size and occurrence and then controlled nozzles to achieve variable application rates. A spray delivery system, which consisted of diaphragm pump, pressure regulator and 4-cycle gasoline engine, offered the spray discharge function. Spray delay time, time adjustment in spray trigger for the leading distance of the sensor, was measured with a high-speed camera, and it was from 50 to 140 ms earlier than the desired time (398 ms) at 3.2 km/h under indoor conditions. Consequently, the sprayer triggered 4.5 to 12.5 cm prior to detected targets. Duty cycles of the sprayer were from 20 to 34 ms for senor-to-canopy (STC) distance from 0.30 to 0.76 m. Outdoor test confirmed that the nozzles were triggered from 290 to 380 ms after detecting tree canopy at 3.2 km/h. The spray rate of the new sprayer was 58.4 to 85.2% of the constant application rate (935 L/ha). Spray coverage was collected at four areas of evergreen canopy by water sensitive papers (WSP), and ranged from 1.9 to 41.1% and 1.8 to 34.7% for variable and constant rate applications, respectively. One WSP area had significant (P < 0.05) difference in mean spray coverage between two application conditions.

A Study on Characterization of Modified Surface Manufactured by PTA Spray (PTA 용사에 의해 제조된 표면개질부의 특성에 관한 연구)

  • Kim, Gwang-Soo;Ji, Jung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.110-115
    • /
    • 2005
  • Plasma Transferred Arc Spray process was used to make modified surface for wear and corrosion resistant by using Co system powder type alloy. The modified surface was produced by changing only spray current and other process variables were constant. The current range was from 80 amp to 140 amp as inclosing 20 amp. It was appeared that the geometrical shape, microstructures and microhardness of the modified surface were affected by the different cooling rate of base metal. The modified surface that produced by 120 amp current exhibited the fine microstructure and the highest microhardness number impling good surface characteristics. It was also found that the spray current affected the width but not the height of the bead as increasing current.

  • PDF

An Experimental Study on Spray Characteristics of Directly Injected Bio-Ethanol-Gasoline Blended Fuel By Varying Fuel Temperature (직접분사식 바이오 에탄올-가솔린 혼합연료의 연료온도에 따른 분무 특성에 관한 실험적 연구)

  • Lee, Seangwook;Park, Giyoung;Kim, Jongmin;Park, Bongkyu
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.636-642
    • /
    • 2014
  • As environment problem became a worldwide issue, countries are tightening regulations regarding greenhouse gas reduction and improvement of air pollution problems. With these circumstances, one of the renewable energies produced from biomass is getting attention. Bio-ethanol, which is applicable to SI engine, showed a positive effect on the PFI (Port Fuel Injection) type. However, Ethanol has a problem in homogeneous mixture formation because it has high latent heat of vaporization characteristics and in the GDI (Gasoline Direct Injection) type, mixture formation is required quickly after fuel injection. Particularly, South Korea is one of the countries with great temperature variation among seasons. With this reason, South Korea supply fuel additive for smooth engine operation during winter. Therefore, experimental study and investigation about application possibility of blending fuel is necessary. This paper demonstrates the spray characteristics by using the CVC direct injection and setting the bio-ethanol blending fuel temperature close to the temperature during each seasons: -7, 25, $35^{\circ}C$. The diameter and the width of the CVC are 86mm and 39mm. High-pressure fuel supply system was used for target injection pressure. High-speed camera was used for spray visualization. The experiment was conducted by setting the injection pressure and ambient pressure according to each temperature of bio-ethanol blending fuel as a parameter. The result of spray visualization experiment demonstrates that as the temperature of the fuel is lower, the atomization quality is lower, and this increase spray penetration and make mixture formation difficult. Injection strategy according to fuel temperature and bio-ethanol blending rate is needed for improving characteristics.