• Title/Summary/Keyword: spray tip penetration

Search Result 153, Processing Time 0.027 seconds

Spray Characteristics of Diesel Fuel with Oxygenates (함산소 물질이 혼합된 디젤연료의 분무특성)

  • Ryu, Keun-Young;Ha, Jong-Suk;No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.38-44
    • /
    • 2001
  • The effect of four diesel fuels with oxygenated agents fuels on spray properties from plain-orifice atomizer was investigated. The oxygenates evaluated were diglyme, MTBE, DEE and DMM and were blended in weights of 5, 10, 15, 20 and 30% in a baseline diesel fuel. The physical properties such as surface tension, density and viscosity are also measured for each blended oxygenated fuels. It was found that changes in physical properties of fuels considered are enough to influence spray properties, i.e. spray angle, spray tip penetration and mean drop size. Spray properties were measured by PMAS(particle motion analysis system) which is employing a point measurement technology. Spray angle increased with increase in oxygenate content. The effect, however, was not great in the higher blend level. The oxygenated fuels produced more shorter spray tip penetration than diesel fuels. SMD was decreased with the increase in blending percent. SMD for DMM and DEE are represented 10.33 and 3.41% decreasing rates respectively. It was found that changes in spray characteristics of oxygenated fuel were easily large enough to impact pollutant emissions. It was clear from this study that spray characteristics of oxygenated fuel is one of possible cause of reducing pollutant emissions. It was clear from this study that spray characteristics of oxygenated fuel is one of possible cause of reducing pollutant emissions from diesel engines when oxygenated fuels is applied.

  • PDF

A Study on the Spray-atomization Characteristics of Diesel-ethanol Blended Fuels in a High Pressure Diesel Injection System (디젤 고압 분사 시스템에서 디젤-에탄올 혼합연료의 분무 및 미립화 특성에 관한 연구)

  • Kim, Se-Hun;Park, Su-Han;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.80-87
    • /
    • 2010
  • The purpose of this paper is to analyze the effects of ethanol blending ratio and fuel temperature in diesel-ethanol blended fuel on the spray-atomization characteristics in a high pressure common-rail injection system. In this work, a diesel fuel and three blended fuels were used as test fuels. Blended fuels were made by blending ethanol with a purity 99.9% to diesel fuel, from 0% to 30%. In order to keep diesel-ethanol blending stability, 5% of biodiesel fuel as volumetric ratio was added into test fuels. The fuel temperature was controled in steps with 40K, from 290K to 370K. Macroscopic spray characteristics were investigated by analyzing the spray tip penetration and spray cone angle through spray images obtained from visualization system. In addition, in order to study microscopic spray characteristics of ethanol blended fuels, the droplet diameter, was analyzed using the droplet measuring system. It is revealed that the spray tip penetration is similar regardless of ethanol blending ratio. As ethanol blending ratio is increased, the spray cone angle becomes wider. It is shown that the spray cone angle is affected by low viscosity and density of ethanol. As the fuel temperature increases, the spray tip penetration and spray cone angle become shorter and narrower respectively. The SMD of ethanol blending fuels is smaller than that of diesel fuel because of low viscosity and surface tension of ethanol.

A Study on Spray Characteristics of Biodiesel Derived from Waste Cooking Oil (폐식용유 바이오디젤 연료의 분무특성에 관한 연구)

  • Ahn, Sangyeon;Kim, Woong Il;Lee, Chang Sik
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.182-187
    • /
    • 2013
  • This study was performed to investigate the effect of biodiesel derived from waste cooking oil on the spray behavior and macroscopic spray characteristics. To analyze quantitative characteristics of test fuels, injection quantity was measured at various injection pressures and the spray images of injected fuels in the pressurized chamber were obtained by using a high speed camera and image analysis system. Based on the measured spray images, the spray tip penetration and spray cone angle were investigated at various energizing timings and injection pressures. In this work, the experimental results showed that the injection quantity of waste cooking biodiesel indicated the higher quantities than diesel at high injection pressure. As the injection pressure was increased, the spray tip penetrations of biodiesel were higher value than diesel. The difference of penetration between biodiesel and conventional diesel fuel was reduced in accordance with the increase of injection pressure. Also, the spray angles of diesel were larger than that of biodiesel because diesel fuel has lower viscosity than biodiesel. In addition, the spray evolution processes of biodiesel fuel at various injection pressures and the elapsed time after the injection were compared to the conventional diesel fuel.

A Study on the Spray, Combustion, and Exhaust Emission Characteristics of Dimethyl-ether (DME) by Experiment and Numerical Analysis (Dimethyl-ether (DME) 연료의 분무, 연소 및 배기 특성에 관한 실험 및 수치해석적 연구)

  • Park, Su-Han;Kim, Hyung-Jun;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.31-37
    • /
    • 2010
  • The aim of this work is to investigate the spray and combustion characteristics of dimethyl-ether (DME) at various injection conditions. The spray characteristics such as spray tip penetration and spray cone angle were experimentally studied from the spray images which obtained from the spray visualization system. Combustion and emissions characteristics were numerically investigated by using KIVA-3V code coupled with Chemkin chemistry solver. From these results, it revealed that DME spray had a shorter spray tip penetration and wider spray cone angle than that of diesel spray due to the low density, low surface tension, and fast evaporation characteristics. At the constant heating value condition, DME fuel showed higher peak combustion pressure and earlier ignition timing, because of high cetane number and superior evaporation characteristics. In addition, the combustion of DME exhausted more $NO_x$ emission and lower HC emission due to the active combustion reaction in the combustion chamber. The result shows that DME had a little soot emission due to its molecular structure characteristics with no direct connection between carbons.

Experimental Study on Mixing Stability and Macroscopic Spray Characteristics of Diesel-gasoline Blended Fuels (디젤-가솔린 혼합연료의 혼합안정성 및 거시적인 분무 특성에 관한 실험적 연구)

  • Park, Sewon;Park, Su Han;Park, Sungwook;Chon, Mun Soo;Lee, Chang Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.121-127
    • /
    • 2012
  • The study is to investigate the mixing stability, fuel properties, and macroscopic spray characteristics of diesel-gasoline blended fuels in a common-rail injection system of a diesel engine. The test fuels were mixed diesel with gasoline fuel, which were based volume fraction of gasoline from 0 to 100% in 20% intervals. In order to analyze the blended effect of gasoline to diesel fuel, the properties of test fuels such as density, viscosity, and surface tension were measured. In addition, the spray behavior characteristics were studied by investigating the spray tip penetration and spray angle using a spray images through a spray visualization system. It was revealed that the density, kinematic viscosity and surface tension of diesel-gasoline blending fuels were decreased with the increase of gasoline fuel. The injection quantity of test fuels were almost similar level at short energizing duration condition. On the other hand, the increase of energizing duration shows the decrease of injection quantity compared to short energizing duration. The test blending fuels have similar growth in Spray tip penetration and Spray cone angle.

Spray Characteristics of Hydrotreated Biodiesel Blended Fuels

  • Kim, Duckhan;Oh, Sehun;Kim, Seonghwan;No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.169-175
    • /
    • 2013
  • Hydrotreated biodiesel (HBD) would be one of the promising alternative fuels instead of current biodiesel. In this study, spray characteristics in terms of spray penetration and spray angle were conducted experimentally including calculated SMDs as well. The ambient pressures of 1, 3, and 5 MPa and injection pressures of 30, 80, and 130 MPa were introduced and the fuels employed were petro-diesel, and 2, 10, 20, 30, and 50% for hydrotreated biodiesel, respectively. The result of this study found that the more HBD blended diesels have the slightly shorter spray tip penetration lengths especially on the lowest injection pressure and at the highest ambient pressure, but have the larger spray angles and SMDs than petro-diesel. Consequently, this study found that HBD has a little bit merits and demerits of macro- and micro- spray patterns compared to petro-diesel.

Numerical Study of Spray Characteristics of n-Heptane in Constant Volume Combustion Chamber under Diesel Engine Conditions (정적연소기를 이용한 디젤 엔진 조건에서 n-Heptane의 분무특성에 관한 수치해석 연구)

  • DAS, SHUBHRA KANTI;LIM, OCKTAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.727-736
    • /
    • 2016
  • Numerical simulations of n-heptane spray characteristics in a constant volume combustion chamber under diesel engine like conditions with increasing ambient gas density ($14.8-142kg/m^3$) and ambient temperature (800-1000 K) respectively were performed to understand the non-vaporizing and vaporizing spray behavior. The effect of fuel temperature (ranging 273-313 K) on spray characteristics was also simulated. In this simulation, spray modeling was implemented into ANSYS FORTE where the initial spray conditions at the nozzle exit and droplet breakups were determined through nozzle flow model and Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) model. Simulation results were compared with experimentally obtained spray tip penetration result to examine the accuracy. In case of non-vaporizing condition, simulation results show that with an increment of the magnitude of ambient gas density and pressure, the vapor penetration length, liquid penetration length and droplet mass decreases. On the other hand vapor penetration, liquid penetration and droplet mass increases with the increase of ambient temperature at the vaporizing condition. In case of lower injection pressure, vapor tip penetration and droplet mass are increased with a reduction in fuel temperature under the low ambient temperature and pressure.

Effect of Solid Body rotating Swirl on Spray Structure (강체선회 유동이 분무 구조에 미치는 영향)

  • 이충훈;최규훈;노석홍;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.137-146
    • /
    • 1997
  • Spray characteristics of high pressure injectors for diesel engines have been experimentally studied with special emphasis on the effect of swirl. A constant volume chamber was rotated in order to generate a continuous swirl having the flow field of a solid body rotation, resulting in the linear dependance of the swirl number on the rotating speed of the chamber. Emulsified fuel is injected into the chamber and the developing process of fuel sprays is visualized. The fuel spray developing process in D.I. diesel engine was investigated by this liquid injection technique. The effect of swirl on the spray tip penetration is quantified through modelling. Results show that the spray tip penetration is qualitatively different for low and high pressure injections. For high pressure injection case, a good agreement is achieved between the experimental results and the modeling accounting the effect of swirl. For low pressure injection, a reasonable agreement is obtained. It is found that excessive swirl may cause adverse effect on spray dispersion during the initial combustion period since the spray can not be impinged on chamber wall.

  • PDF

The Effect of Turbulence Model on the Flow Field and the Spray Characteristics (유동장 및 분무특성에 미치는 난류모델의 영향)

  • 양희천;유홍선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.87-100
    • /
    • 1997
  • The ability of turbulence model to accurately describe the complex characteristics of the flow field and the fuel spray is of great importance in the optimum design of diesel engine. The numerical simulations of the flow field and the spray characteristics within the combustion chamber of direct injection model entgine are performed to examine the applicability of turbulence model. The turbulence models used are the RNG $\varepsilon$ model and the modified $\varepsilon$ model which included the compressibility effect due to the compression/expansion of the charges. In this study, the predicted results in the quiescent condition of direct injection model engine show reasonable trends comparing with the experimental data of spray characteristics, i. e., spray tip penetration, spray tip velocity. The results of eddy viscosity obtained using the $\varepsilon$ model in the spray region is significantly larger than that obtained using the RNG $\varepsilon$ model. The application of the RNG model seems to have some potential for the simulations of the spray characteristics, e. g., spray tip penetration, spray tip velocity, droplets distribution over the $\varepsilon$ model.

  • PDF

Effect of the Injection Parameters on Diesel Spray Characteristics

  • Song Kyu Keun;Sim Sang Cherl;Jung Byong Koog;Kim Hyung Gon;Kim Jang Heon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1321-1328
    • /
    • 2005
  • The characteristics of the diesel spray have affected certain aspects of engine performance, such as the power, fuel consumption, and emissions. Therefore, this study was performed to investigate the effects of various injection parameters. In order to obtain the effect of injection parameters on diesel spray characteristics, the experiment is performed by using a high temperature and pressure chamber. The behaviors of the spray are visualized by using a high speed video camera, spray angle, penetration, and various other things. The results of the experiment are summarized as follows. (1) The correlation of the spray penetration can be expressed as follows. $$0< t $$t_{b} (2) The correlation of the spray angle can be expressed as follows $$T_a=293K\;tan({\theta}/2)=0.59({\rho}a/{\rho}f)^{0.437}$$ $$T_a=473K\;tan({\theta}/2)=0.588({\rho}a/{\rho}f)^{0.404}$$ (3) The measured macro characteristics that include the spray tip penetration and spray angle corresponded with the established correlations.