• Title/Summary/Keyword: spray parameter

Search Result 105, Processing Time 0.025 seconds

Synthesis and Properties of ITO Nano Powders by Spray Drying Process (분무건조법에 의한 ITO 나노분말의 합성과 특성)

  • 허민선;최철진;권대환
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • The Indium Tin Oxide(ITO) nano powders were prepared by spray drying and heat treatment process. The liquid solution dissolved Indium and Tin salts was first spray dried to prepare chemically homogeneous recursor powders at the optimum spray drying conditions. Subsequently, the precursor powders were subjected to eat treatment process. The nano size ITO powders was synthesized from the previous precursor powders and the npuities also were decreased with increasing heat treatment temperature. Furthermore, the lattice parameter of TO nano powders was increased by doping Tin into Indium with increasing heat treatment temperature. The par icle size of the resultant ITO powders was about 20∼50nm and chemical composition was composed of In:Sn =86:10 wt.% at 80$0^{\circ}C$.

Fabrication of Al/Al-SiC Composites by Thermal Spray Process (용사법에 의한 Al/Al-SiC 복합재료의 제조)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • Metal matrix composites(MMCs) reinforced with ceramic particulates are receiving increasing attention because their high specific strength, low coefficient of thermal expansion and excellent wear resistance. Especially, Al-based composites(AMCs) have been widely applied for the aerospace and automotive industries. Such composites are mainly fabricated by the cast, powder metallurgy and infiltration process. In this study, SiC particulate reinforced Al-based composites were fabricated by thermal spray process and their wear behavior were investigated. Composites with different spray parameter were fabricated by using flame spray apparatus. Microstructure and wear behavior of the composites were observed by scanning electron microscope(SEM) and electron probe micro-analysis(EPMA).

  • PDF

Research Issues of Electrostatic Spray Deposition (ESD) Technique (정전기 분무 증착법에 대한 최근 연구 동향 고찰)

  • Ryu, Sung-Uk;Lee, Sang-Yong
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.7-16
    • /
    • 2006
  • Performance of thin films fabricated with the electrostatic spray deposition (ESD) technique is strongly governed by surface morphology, which depends on deposition parameters such as deposition time and temperature, solution properties, and surface characteristics of substrates. In this article, the state of the art on the relationships between the surface morphology and the deposition parameters is presented. Also studies on the electro-hydrodynamic atomization process and the motion of drops relevant to the ESD technique are briefly reviewed, and the future research works are suggested.

  • PDF

Effect of the Change in Injection Pressure on the Mixture Formation Process in Evaporative Free Diesel Spray (분사압력변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향)

  • Yeom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.214-219
    • /
    • 2005
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 72MPa to 112MPa by using a common rail injection system(ECD-U2). The images of liquid and vapor phase in the evaporating free diesel spray are simultaneously taken by exciplex fluorescence method. As a result, it can be confirmed that the distribution of vapor concentration is more uniform in the case of the high injection than in that of the low injection pressure.

  • PDF

Study on the Behavior Characteristics of Gasoline-Fuel Spray by Using a Numerical Analysis (수치해석을 이용한 가솔린연료 분무 거동특성 연구)

  • Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.992-999
    • /
    • 2009
  • The focus of this study is placed on the behavior characteristics of gasoline spray under condition field of room temperature and pressure. To analyze the behavior and flow characteristics of injected fuel spray is important in speculation of mixture formation process. Also the exhausted emissions from actual engines can be controlled by the analyzed results. The ${\varphi}$(degree of freedom) and K(energy ratio of particle motion) are selected as the simulation parameter. The factors affect characteristics of spray structure, and the factors are included in the sub-program of the KIVA-II code. In this study, the simulation study by modified KIVA-II code was conducted and the calculated results obtained by the modified KIVA-II code show good agreements with experimental results. As a result, applying the improved TAB model with ${\varphi}$=8 and K=2 to simulation analysis of the KIVA-II code is sufficiently useful for analyzing the macro characteristics in spray structure, such as the spray tip penetration of injected fuel spray.

Spray Characteristics on the Electrostatic Rotating Bell Applicator

  • Im, Kyoung-Su;Lai, Ming-Chia;Yoon, Suck-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2053-2065
    • /
    • 2003
  • The current trend in automotive finishing industry is to use more electrostatic rotating bell (ESRB) need space to their higher transfer efficiency. The flow physics related with the transfer efficiency is strongly influenced by operating parameters. In order to improve their high transfer efficiency without compromising the coating quality, a better understanding is necessary to the ESRB application of metallic basecoat painting for the automobile exterior. This paper presents the results from experimental investigation of the ESRB spray to apply water-borne painting. The visualization, the droplet size, and velocity measurements of the spray flow were conducted under the operating conditions such as liquid flow rate, shaping airflow rate, bell rotational speed, and electrostatic voltage setting. The optical techniques used in here were a microscopic and light sheet visualization by a copper vapor laser, and a phase Doppler particle analyzer (PDPA) system. Water was used as paint surrogate for simplicity. The results show that the bell rotating speed is the most important influencing parameter for atomization processes. Liquid flow rate and shaping airflow rate significantly influence the spray structure. Based on the microscopic visualization, the atomization process occurs in ligament breakup mode, which is one of three atomization modes in rotating atomizer. In the spray transport zone, droplets tend to distribute according to size with the larger drops on the outer periphery of spray. In addition, the results of present study provide detailed information on the paint spray structure and transfer processes.

Study on the Spray Behavior from Swirl and Fan Spray Type Gasoline Injectors Impinging on the Constant Temperature Flat Plate (스월형 및 팬스프레이형 고압직분식 가솔린 분사기의 상온 평판에서의 분무 충돌 특성에 관한 연구)

  • Kim, Chong-Min;Kang, Shin-Jae;Kim, Man-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.100-106
    • /
    • 2006
  • The behavior of spray impinging on the inclined constant temperature flat plate was experimentally investigated. To clarify the wall effect of a high pressure DISI injector, a relative angle of the inclined wall to a spray axis was varied. Spray penetration along the wall was observed optically and it was compared with that of a Fan spray type and Swirl type spray. To evaluate various spray motion quantitatively, a spray path penetration which describe the development of a spray tip along the wall was newly introduced. To observe the structure of an impinging spray, it was visualized by a controlled stroboscope light and its visualized image was captured on an CCD camera. Using the digital image of impinging spray $H_x$ and $R_x$ was extracted to clarify the structure of impinging spray. The main parameter of the relative position of the wall was the inclined angle which was defined as the angle was varied from $0^{\circ}$ (vertical impingement) to $60^{\circ}$ at the same condition.

Optimal Condition of Hydroxyapatite Powder Plasma Spray on Ti6Al4V Alloy for Implant Applications

  • Ahn, Hyo-Sok;Lee, Yong-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.211-214
    • /
    • 2012
  • Optimal conditions for HA plasma spray-coating on Ti6Al4V alloy were investigated in order to obtain enhanced bone-bonding ability with Ti6Al4V alloy. The properties of plasma spray coated film were analyzed by SEM, XRD, surface roughness measurement, and adhesion strength test because the film's transformed phase and crystallinity were known to be influential to bone-bonding ability withTi6Al4V alloy. The films were formed by a plasma spray coating technique with various combinations of plasma power, spray distance, and auxiliary He gas pressure. The film properties were analyzed in order to determine the optimal spray coating parameters with which we will able to achieve enhanced bone-bonding ability with Ti6Al4V alloy. The most influential coating parameter was found to be the plasma spray distance to the specimen from the spray gun nozzle. Additionally, it was observed that a relatively higher film crystallinity can be obtained with lower auxiliary gas pressure. Moderate adhesion strength can be achievable at minimal plasma power. That is, adhesion strength is minimally dependent on the plasma power. The combination of shorter spray distance, lower auxiliary gas pressure, and moderate spray power can be recommended as the optimal spray conditions. In this study, optimal plasma spray coated films were formed with spray distance of 70 mm, plasma current of 800 A, and auxiliary gas pressure of 60 psi.

Measurement and Prediction of Spray Targeting Points according to Injector Parameter and Injection Condition (인젝터 설계변수 및 분사조건에 따른 분무타겟팅 지점의 측정 및 예측)

  • Mengzhao Chang;Bo Zhou;Suhan Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • In the cylinder of gasoline direct injection engines, the spray targeting from injectors is of great significance for fuel consumption and pollutant emissions. The automotive industry is putting a lot of effort into improving injector targeting accuracy. To improve the targeting accuracy of injectors, it is necessary to develop models that can predict the spray targeting positions. When developing spray targeting models, the most used technique is computational fluid dynamics (CFD). Recently, due to the superiority of machine learning in prediction accuracy, the application of machine learning in this field is also receiving constant attention. The purpose of this study is to build a machine learning model that can accurately predict spray targeting based on the design parameters of injectors. To achieve this goal, this study firstly used laser sheet beam visualization equipment to obtain many spray cross-sectional images of injectors with different parameters at different injection pressures and measurement planes. The spray images were processed by MATLAB code to get the targeting coordinates of sprays. A total of four models were used for the prediction of spray targeting coordinates, namely ANN, LSTM, Conv1D and Conv1D & LSTM. Features fed into the machine learning model include injector design parameters, injection conditions, and measurement planes. Labels to be output from the model are spray targeting coordinates. In addition, the spray data of 7 injectors were used for model training, and the spray data of the remaining one injector were used for model performance verification. Finally, the prediction performance of the model was evaluated by R2 and RMSE. It is found that the Conv1D&LSTM model has the highest accuracy in predicting the spray targeting coordinates, which can reach 98%. In addition, the prediction bias of the model becomes larger as the distance from the injector tip increases.

Spray Characteristics of Modulated Liquid Jet Injected into a Subsonic Crossflow (주파수 변조 분사가 횡단 유동장의 분무 특성에 미치는 영향)

  • Lee, I.C.;Kim, J.H.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.59-64
    • /
    • 2009
  • These experiments are close examination of spray characteristics that are continuous liquid jet and modulated liquid jet. The experiments were conducted using water, over a range of crossflow velocities from $42{\sim}l36\;m/s$, with modulation frequencies of $35.7{\sim}166.2\;Hz$. Between continuous crossflow jet and modulated cross-flow jet of penetration, breakup point, spray angle and macro spray shape are experimentally investigated with image analysis. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than modulation effect. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of modulation frequency, SMD inclination of the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various modulation frequency was same distribution. And volume flux was decreased when the modulation frequency increase.

  • PDF