• Title/Summary/Keyword: spray parameter

검색결과 104건 처리시간 0.019초

실험계획법에 의한 Al/SiC 복합재료의 최적공정 설계 (Optimal Parameter Design for Al/SiC Composites using Design of Experiments)

  • 이광진;김균택;김영식
    • 동력기계공학회지
    • /
    • 제15권5호
    • /
    • pp.72-76
    • /
    • 2011
  • In this work, the parameter optimization for thermal-sprayed Al/SiC composites have been designed by $L_9(3^4)$ orthogonal array and analysis of variance(ANOVA). Al/SiC composites were fabricated by flame spray process on steel substrate. The hardness of composites were measured using micro-vickers hardness tester, and these results were analyzed by ANOVA. The ANOVA results showed that the oxygen gas flow, powder feed rate and spray distance affect on the hardness of the Al/SiC composites. From the ANOVA results, the optimal combination of the flame spray parameters could be extracted. It was considered that experimental design using orthogonal array and ANOVA was efficient to determine optimal parameter of thermal-sprayed Al/SiC composites.

소화노즐의 분무특성에 대한 설계 변수 영향의 수치해석적 연구 (Numerical Study on the Effects of Design Parameters on the Spray Characteristics of Fire Suppression Nozzles)

  • 이창효;최병일;한용식;김창;정희택
    • 한국분무공학회지
    • /
    • 제11권4호
    • /
    • pp.199-204
    • /
    • 2006
  • Numerical investigation has been performed to simulate the spray characteristics in mist-spray fire suppression nozzles in sense of design parameters. Two key shape factors in nozzle orifices. i.e. diameter and length are chosen as simulation parameters. Commercial softwares, FLUENT and FDS with the proper modelings were applied as numerical tools. Main performances of nozzles, i.e., K-factors, spray angles, droplet size, jet velocities and fire suppression time are analyzed for each parameter to find optimal design conditions.

  • PDF

이중 선회 분무간의 상호작용에 관한 연구 (The Study of the Interaction between Dual Spray by Two Swirl Injectors)

  • 박병성;이동조;김호영
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.141-148
    • /
    • 2002
  • Experimental investigation of the interaction between dual spray formed by swirl type injector was conducted. Experimental parameter was fuel temperature, varied in the range from $-20^{\circ}C$ to $120^{\circ}C$. Measuring parameter were vertical distance from injector tip to patternator and gap between injectors. Volumetric distiribution and SMD were measured for the various combination of parameters. The results of present study show that the arithmetic sum of each of spray is not equal to dual spray, but it is equal above specific fuel temperature. As the increases of fuel temperature, SMD decreases and becomes more uniform. As the increases of gap between injectors, fuel volume and SMD at collision area increases, but penetrated fuel decreases.

  • PDF

Calculation of Fuel Spray Impingement and Fuel Film Formation in an HSDI Diesel Engine

  • Kyoungdoug Min;Kim, Manshik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권3호
    • /
    • pp.376-385
    • /
    • 2002
  • Spray impingement and fuel film formation models with cavitation have been developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process was modeled by considering the effects of surface temperature conditions and fuel film formation. The behavior of fuel droplets after impingement was divided into rebound, spread and splash using the Weber number and parameter K(equation omitted). The spray impingement model accounts for mass conservation, energy conservation, and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, momentum, and energy equations along the direction of fuel film thickness. Zero dimensional cavitation model was adopted in order to consider the cavitation phenomena and to give reasonable initial conditions for spray injection. Numerical simulations of spray tip penetration, spray impingement patterns, and the mass of film-state fuel matched well with the experimental data. The spray impingement and fuel film formation models have been applied to study spray/wall impingement in high-speed direct injection diesel engines.

화상상관법을 이용한 증발 디젤분무의 구조해석 (Analysis on the Structure of Evaporative Diesel Spray by Using PIV Technique)

  • 염정국;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.74-79
    • /
    • 2004
  • The effects of change in injection pressure on spray structure have been investigated in high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Also emissions of diesel engines can be controlled by the analyzed results. Therefore, this study examines the evaporating spray structure by using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 72 MPa to 112 MPa with a high pressure injection system(ECD-U2). The PIV(Particle Image Velocimetry) technique was used to capture flow variation of the evaporative diesel spray. A study on the mixture formation process of diesel spray was executed by the results of flow analysis in this study. Consequentially the large-scale vortex flow could be found in downstream spray and the formed vortex governs the mixture formation process in diesel spray.

측정방법에 따른 핀틀형 가솔린 인젝터의 분무각 비교 (Comparision of Spray Angles of Pintle-Type Gasoline Injector with Different Measuring Methods)

  • 김재호;임정현;노수영;문병수;김주영;강경균
    • 한국분무공학회지
    • /
    • 제4권4호
    • /
    • pp.9-16
    • /
    • 1999
  • Spray angle, a parameter which is most commonly used to evaluate. spray distribution, is important because it affects the axial and radial distribution of the fuel. Spray angles were measured and compared for the pintle-type gasoline fuel injector with n-heptane as a test fuel with the three different measuring techniques, i.e. digital image processing, shadowgraphy and spray patternator, respectively. Fuel was injected with the injection pressures of 0.2-0.35MPa into the room temperature and atmospheric pressure environment. In digital image processing method, the transmittance level greatly influences the spray angle with the axial distance from the injector. From the experimental results by the shadowgraphy technique, it is obvious that the spray angle vary during the injection period. The results of spray angle from the spray patternator show that there exist the different spray angles in the different areas. The spray angles increase with the increase in the injection pressure for the three measurement techniques considered in this study. The spray angle is widely different, especially in the near region from the injector, according to the measurement techniques used in this experimental work.

  • PDF

벽면 충돌 분사에 의한 DI디젤엔진 배기가스 특성의 수치해석적 연구 (A Numerical Study on the emission Characteristics of DI Diesel Engine by Wall Impingement of Spray)

  • 최성훈;황상순
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.97-105
    • /
    • 1998
  • High pressure injection is recently used to reduce the emissions and increase the power of DI diesel engine. This high pressure injection makes the spray strike the cylinder wall. This spray/wall impingement is known to affect the emission and performance of DI diesel engine such that it is very important to know the spray/wall impingement process. In this study, multidimensional computer program KIVA-II was used to clarify the effect of spray wall impingement by different injection spray angle with the spray/wall impingement model consiedering rebound and slide motion and also the improved submodel for liquid breakup, drop distortion model.

  • PDF

직접분사식 디젤엔진에서의 분무충돌과 연료액막형성 해석 (Simulation of Spray Impingement and Fuel Film Formation in a Direct Injection Diesel Engine)

  • 김만식;민경덕;강보선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.919-924
    • /
    • 2000
  • Spray impingement model and fuel film formation model were developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process were modelled by considering the change of behaviour with surface temperature condition and fuel film formation. We divided behaviour of fuel droplets after impingement into stick, rebound and splash using Weber number and parameter K. Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. A fuel film formation model was developed by Integrating the continuity, the Navier-Stokes and the energy equations along the direction of fuel film thickness. The validation of the model was conducted using diesel spray experimental data and gasoline spray impingement experiment. In all cases, the prediction compared reasonably well with experimental results. Spray impingement model and fuel film formation model have been applied to a direct injection diesel engine combustion chamber.

  • PDF

이중 선회 분무간의 거리와 연료온도 변화에 따른 분무특성에 관한 실험적 연구 (The Experimental Study on the Effects of Temperature and Distance between Injectors on the Spray Characteristics of Duplex Swirl Injector)

  • 최경식;박병성;김호영;민성기
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.11-15
    • /
    • 2002
  • Experimental studies on effects of the interaction of duplex swirl injector and the liquid temperature on the spray characteristics were conducted. Water and fuel were used as a test fluid for the experiments. The drop size distributions of the liquid spray were measured with Malvern particle sizer. The liquid temperature and distance of injectors were adopted as the operating parameter. The results show that SMD decrease as the increases of fuel temperature and pressure. The spray angle increase as fluid temperature increases. For fuel spray, SMD of impacting surface increase as the distance of injectors is lengthened.

  • PDF

증발디젤분무의 혼합기 형성과정에 대한 열역학적 접근 (Thermodynamic Approach to the Mixture Formation Process of Evaporative Diesel Spray)

  • 염정국
    • 대한기계학회논문집B
    • /
    • 제33권3호
    • /
    • pp.201-206
    • /
    • 2009
  • The focus of this work is placed on the analysis of the mixture formation process under the evaporative diesel-free spray conditions. In order to examine homogeneity of mixture within the vapor phase region of the injected spray, image analysis was carried out based on the entropy of statistical thermodynamics. As an experimental parameter, the injection pressure and ambient gas density were selected, and effects of the injection pressure and density variation of ambient gas on the mixture formation process in the evaporative diesel spray were investigated. In the case of application of the thermodynamic entropy analysis to evaporative diesel spray, the value of the dimensionless entropy always increases with increase in time from injection start. Consequently, the dimensionless entropy in the case of the higher injection pressure is higher than that of lower injection pressure during initial injection period.