• Title/Summary/Keyword: spray droplets

Search Result 410, Processing Time 0.024 seconds

Unsteady Intermittent Spray Characteristics of PEI Gasoline Injector (PEI용 가솔린 인젝터의 비정상 간헐 분무 특성)

  • Kim Beomjun;Lee Jaiho;Cho Daejin;Yoon Suckju
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.64-74
    • /
    • 2005
  • The effect of fuel injection spray on engine performance has been known as one of the major concerns for improving fuel economy and reducing emissions. In general, reducing the spray droplet size could prevent HC emission in gasoline engine. As far as PFI gasoline engine is concerned, the mixture of air and fuel may not be uniform under a certain condition, because breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve. This study, by constituting PFI gasoline spray system, was performed to study the transient spray characteristics and dynamic behavior of droplets from two-holes two-sprays type injector used in DOHC gasoline engine. Mean droplet size and optical concentration in accordance with various conditions were measured by LDPA and CCD camera. Through this study, the variation of drop size and optical concentration could be used for understanding the behavior of unsteady spray was declared and the existing the small droplets between each pulse spray could be estimated caused to the development of wall film was conformed.

A Study on the Flow Characteristics of Gasoline Spray using Digital Image Processing (디지털 이미지 법을 이용한 가솔린 분무의 유동 특성에 관한 연구)

  • 이창식;이기형;전문수;김영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.219-227
    • /
    • 1998
  • This paper describes the fuel spray characteristics of gasoline port injectors such as the breakup procedures of liquid fuel, breakup and extinction behaviors of fuel spray at nozzle tip, time history of SMD and velocity distribution of fuel spray in the direction of fuel stream. Pintle-type gasoline fuel injector was used to analyze mentioned spray characteristics. In order to visualize the fuel spray behaviors and to measure the droplet mean diameter and velocities of spray droplets, the Schlieren method, digital image processing and auto-correlation PIV were applied in this study. In addition, the spray characteristics according to the variation of time were considered. The results of fuel spray show that the liquid sheet breakup starts at 10mm downstream actively. The flying time is approximately 4msec between 50mm and 80mm down the nozzle tip. Also, SMD of fuel spray, the number of droplets and fuel velocity distribution at each point of downstream are discussed.

  • PDF

An Experimental Approach to Evaluate the Desulfurization Yield in Spray Drying Sorber (반건식 세정기의 산성가스 제거성능에 관한 실험적 연구)

  • Yang, Hyun-Mo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.589-598
    • /
    • 2000
  • A pilot-scale Spray Drying Sorber (SDS) system was set up to evaluate the effect of spray characteristics on the desulfurization yield. The size distribution and the Sauter Mean Diameters of slurry droplets were measured in advance using the optical size measurement system, Malvern 2600. The desulfurization yield of the drying chamber by size was measured for the conditions of inlet gas and spray injection. As a reagent, 10% limestone slurry of $Ca(OH)_2$ was treated with flue gas containing $SO_2$, and the combustion gas analyzer and gas detectors were attached to measure the $SO_2$ concentration. With a flow rate of 144 Nm3/h and a temperature range of $200{\sim}300^{\circ}C$, the experiments were performed for the Stoichiometric Ratio (SR) of 1.0 to 3.0 and droplet mean diameter of 6.5 to $34.3{\mu}m$. In case of smaller spray droplets, the desulfurization efficiency improved due to the increase of total droplet surface area, while the reduction in evaporation time reduced the contact time between the droplets and $SO_2$ gas. In some typical region of droplet diameter, this negative effect, reduction of contact time, became dominant and the desulfurization yield decreases the desulfurization yield in spite of the expansion in absorption area. These results revealed that there exists the optimal size of spray droplets for a given state, which is determined by the compromise between the total surface area of slurry droplets and the evaporation time of droplets. The measurements also indicated that the inlet temperature of flue gas changes the optimal injection condition by varying the driving force for evaporation. The results confirm that the effect of the evaporation time of slurry droplets should be considered in analyzing the desulfurization yield as well as the total surface area, for it is a significant aspect of the correlation with the capabilities of $SO_2$ absorption in wet droplets. In conclusion, the optimal condition of spray can be determined based on these results, which might be applied to design or scale-up of SDS system.

Development of a Method to Measure Droplet Size and Spray Deposition Using Computer Vision (컴퓨터 시각에 의한 분무입자 크기와 분무량 측정법 개발)

  • Suh, S.R.;Kim, T.H.;Sung, J.H.;Chung, J.H.;Yoo, S.N.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.4
    • /
    • pp.369-379
    • /
    • 1994
  • A computer vision system consisted of a microscope, a CCD camera, a frame grabber and a personal computer was used to analyze spraying pattern. An algorithm was developed for the system to measure size of droplets including overlapped droplets, to count number of droplets, and to estimate spray deposition in a certain area from the data obtained. A series of experiment was carried out to test validity of the algorithm. The experiment resulted that accuracy of the droplet size measurement, accuracy of counting the number of droplets and the estimation of spray deposition were within an acceptable range. It was concluded from the results that the computer vision system operated by the developed algorithm is very useful tool to analyze spraying pattern.

  • PDF

Extraction of Sizes and Velocities of Spray Droplets by Optical Imaging Method

  • Choo, Yeonjun;Kang, Boseon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1236-1245
    • /
    • 2004
  • In this study, an optical imaging method was developed for the measurements of the sizes and velocities of droplets in sprays. Double-exposure single-frame spray images were captured by the imaging system. An image processing program was developed for the measurements of the sizes and positions of individual particles including separation of the overlapped particles and particle tracking and pairing at two time instants. To recognize and separate overlapping particles, the morphological method based on watershed segmentation as well as separation using the perimeter and convex hull of image was used consecutively. Better results in separation were obtained by utilization of both methods especially for the multiple or heavily-overlapped particles. The match probability method was adopted for particle tracking and pairing after identifying the positions of individual particles and it produced good matching results even for large particles like droplets in sprays. Therefore, the developed optical imaging method could provide a reliable way of analyzing the motion and size distribution of droplets produced by various sprays and atomization devices.

Calculation of Fuel Spray Impingement and Fuel Film Formation in an HSDI Diesel Engine

  • Kyoungdoug Min;Kim, Manshik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.376-385
    • /
    • 2002
  • Spray impingement and fuel film formation models with cavitation have been developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process was modeled by considering the effects of surface temperature conditions and fuel film formation. The behavior of fuel droplets after impingement was divided into rebound, spread and splash using the Weber number and parameter K(equation omitted). The spray impingement model accounts for mass conservation, energy conservation, and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, momentum, and energy equations along the direction of fuel film thickness. Zero dimensional cavitation model was adopted in order to consider the cavitation phenomena and to give reasonable initial conditions for spray injection. Numerical simulations of spray tip penetration, spray impingement patterns, and the mass of film-state fuel matched well with the experimental data. The spray impingement and fuel film formation models have been applied to study spray/wall impingement in high-speed direct injection diesel engines.

VISUALIZATION AND MEASUREMENT OF A NARROW-CONE DI GASOLINE SPRAY FOR THE IMPINGEMENT ANALYSIS

  • Park, J.S.;Im, K.S.;Kim, H.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.221-238
    • /
    • 2004
  • Wall interactions of direct injection spray were investigated using laser-sheet imaging, shadowgraphy, wetted footprint and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, which has three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall. The surface properties of the impact surface, such as the temperature, the presence of a preexisting liquid film also have a small effect on the amount of wetting or the wetted footprint; however, they have strong influence on what occurs just after impact or after a film is formed. The shadowgraph in particular shows that the plate temperature has a significant effect on vapor phase propagation. Generally, 10-20% faster horizontal vapor phase propagation is observed along the wall at elevated temperature condition. For impingement onto a preexisting film, more splash and evaporation were also observed. Contrary to some preconceptions, there is no significant splashing and droplet rebounding from surfaces that are interposed in the path of the DI gasoline spray, especially for the oblique impact angle cases. There also appears to be a dense spray front consists of large sac spray droplets in the oblique impact angle cases. The bulk of the spray is not impacted on the surface, but rather is deflected by it The microscopic details as depicted by phase Doppler measurements show that the outcome of the droplet impaction events can be significantly influenced. Only droplets at the spray front have high enough Weber numbers for wall impact to wet, splash or rebound. Using the sign of vertical velocity, the time-resolved downward droplets and upward droplets are compared. The Weber number of upward moving droplets, which seldom exceeds unity, also decreases as the impact angle decreases, as the droplets tend to impact less and move along the wall in the deflected spray plume.

A Study on the Disintegration and Spreading Behavior of Fuel-spray Emanating from a Liquid-thruster Injector by Pseudo-3D Spatial Distribution Measurement (준3차원적 공간분포 계측에 의한 액체추력기 인젝터 연료분무의 분열 및 확산 거동에 관한 연구)

  • Kim, Jin-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.9-17
    • /
    • 2008
  • Pseudo-3D spatial distribution of spray droplets is investigated by using Dual-mode Phase Doppler Anemometry (DPDA) in order to examine the disintegration and spreading behavior of spray exiting from liquid-propellant thruster injector. Spray injected from nozzle orifice with length-to-diameter ratio ($L/d_o$) of 1.67 and under the injection pressure of 27.6 bar is aligned to the vertical. Vertical and horizontal mean velocities of droplets, Sauter Mean Diameter (SMD), and volumetric flux decrease as droplets travel from center/upstream toward outer region/downstream of spray. Although the distribution of spray characteristic parameters is symmetric against the geometric axis of nozzle orifice, their absolute values are asymmetric.

Development of a New Droplet Binary Collision Model Including the Stretching Separation Regime (스트레칭 분리 영역을 포함한 새로운 액적간 충돌 모델의 개발)

  • Ko, G.H.;Lee, S.H.;Roh, J.S.;Ryou, H.S.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • The present article proposes a new droplet collision model including the stretching separation regime and the formation of satellite droplets. The new model consists of several equations to calculate the post-collision characteristics of colliding droplets and satellite droplets. These equations are derived from the energy balance of droplets between before and after collision. For binary collision of water droplets, the new model shows good agreement with experimental data far the number of satellite droplets.

  • PDF

A Study on the Mixture Formation Process of Evaporating Diesel Spray by Offset Incidence Laser Beam

  • Yeom, Jeong-Kuk;Kang, Byung-Mu;Lee, Myung-Jun;Chung, Sung-Sik;Ha, Jong-Yul;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1702-1709
    • /
    • 2002
  • This paper analyzes heterogeneous distribution of branch-like structure at the downstream region of the spray. The liquid and vapor phase of the spray are obtained using a 35㎜ still camera and CCD camera in order to investigate spray structure of evaporating diesel spray. There have been many studies conducted on diesel spray structure but have yet only focused on the analyses of 2-D structure. There are a few information which is concerned with 3-D structure analysis of evaporating spray. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray and the combustion characteristics of the diesel engines. In this study, the laser beam of 2-D plane was used in order to investigate 3-D structure of evaporating spray The incident laser beam was offset on the central axis of the spray. From the analysis of images taken by offset laser beam, we will examine the formation mechanism of heterogeneous distribution of the diesel spray by vortex flow at the downstream of the spray. The images of liquid and vapor phase of free spray are simultaneously taken through an exciplex fluorescence method. Through this, the branch-like structure consisting of heterogeneous distribution of the droplets forms high concentrated vapor phase at the periphery of droplets and at the spray tip.