• Title/Summary/Keyword: spray droplet size

Search Result 278, Processing Time 0.069 seconds

An Experimental Study on Angled Injection and Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.486-491
    • /
    • 2008
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomizer internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD(Sauter Mean Diameters) distribution by using PLLIF(Planar Liquid Laser Induced Fluorescence) technique. The objectives of this research are getting a droplet distribution and drop size measurement of each condition and compare with the other flows effect. As the result, This research have been showed the droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects and normalized distance from the injector exit length.(x/d, y/d)There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

Spray Characteristics of the Rotary Atomizer for the Slinger Combustor (슬링거 연소기의 회전형 분사장치의 분무특성 연구)

  • Choi, Hyun-Kyung;Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.149-155
    • /
    • 2008
  • An experimental study was performed to understand spray characteristics of the rotary atomizer for the slinger combustor. In this fuel injection system, fuel is injected and atomized in the combustor by centrifugal forces to engine shaft. The experimental apparatus consists of a high speed rotational spindle, rotary atomizer, pressure tank and acrylic case. The droplet size and velocity were measured by PDPA (phase Doppler particle analyzer), and spray was visualized by using high speed camera and Nd:Yag laser-based flash photography. From the test results, the droplet size (SMD) is largely affected by rotational speed, mass flow rate and the number of orifice. As the experimental results, we could understand the spray characteristics of the rotary atomizer for the slinger combustor and obtain the optimum shape of the rotary atomizer which is suitable for the small gas turbine engine.

  • PDF

Unsteady Intermittent Spray Characteristics of PEI Gasoline Injector (PEI용 가솔린 인젝터의 비정상 간헐 분무 특성)

  • Kim Beomjun;Lee Jaiho;Cho Daejin;Yoon Suckju
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.64-74
    • /
    • 2005
  • The effect of fuel injection spray on engine performance has been known as one of the major concerns for improving fuel economy and reducing emissions. In general, reducing the spray droplet size could prevent HC emission in gasoline engine. As far as PFI gasoline engine is concerned, the mixture of air and fuel may not be uniform under a certain condition, because breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve. This study, by constituting PFI gasoline spray system, was performed to study the transient spray characteristics and dynamic behavior of droplets from two-holes two-sprays type injector used in DOHC gasoline engine. Mean droplet size and optical concentration in accordance with various conditions were measured by LDPA and CCD camera. Through this study, the variation of drop size and optical concentration could be used for understanding the behavior of unsteady spray was declared and the existing the small droplets between each pulse spray could be estimated caused to the development of wall film was conformed.

A Study on the Creation of Porosity in Al Alloy(AA2014) Large Rod Preforms by Spray Forming (분무성형법에 의한 Al 합금(AA2014) 대형봉상성형체 제조시 기공발생에 관한 연구)

  • Shin, Don-Soo;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.494-501
    • /
    • 1997
  • In order to manufacture large rod preforms of 2014 Al alloy with a good mechanical property by spray forming method, it was spray-formed at a droplet temperature of $715^{\circ}C$, a droplet flight distance of 400mm, and a spraying angle of $35^{\circ}$. The rod preforms were extruded at $397^{\circ}C$ with the die temperature of $420^{\circ}C$ under the hot extrusion ratio 21:1 and T6 heat treatment was performed. The 2014 Al alloys cast by hot top process were also extruded and heat-treated at the same condition as a reference material. Microstructural observation and tensile test were carried out to investigate the effects of extrusion on microstructure and mechanical property of spray-formed Al alloy. Spray-formed Al alloys had many porosities due to inappropriate process conditions such as long droplet flight distance and low droplet temperature but have fine equiaxed grain. These porosities were reduced with decreasing in grain size by hot extrusion. Ultimate tensile strength and yield strength of spray formed-extruded 2014 Al alloy were inferior to those of the normal cast-extruded 2014 Al alloy, but elongations were superior. The control of porosity was important to get spray formed preform with a good mechanical property.

  • PDF

Experimental and Numerical Study on Characteristics of Air-assisted Spray and Spray Flames (2유체 분무의 연소특성에 관한 실험 및 수치 해석적 연구)

  • Kim, Dong-Il;Oh, Sang-Huen
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.51-63
    • /
    • 1998
  • Air-assisted atomizer flames are investigated numerically to study spray structures in nonburning and burning conditions based on experimental data. A PDA is used to measure droplet size, velocity, and number density for both nonburning and burning spray. Computations utilize time-averaged gas-phase equations and $k-{\varepsilon}$ turbulence model for simplicity. The major features of the liquid-phase model are that a SSF approach is used to represent the effect of gas-phase turbulence on droplet trajectories and vaporization, an infinite-diffusion model is employed to represent the transient liquid-phase process. Computation and experiment results show that the droplet acceleration and evaporation proceed quickly in near the atomizer, characterizing high number densities and a strong convective effect. The primary combustion zone, however, is dorminated by the gas phase reaction and exhibits a sheath combustion.

  • PDF

The Flow Characteristics of Fuel Droplets between the Twin Spray for 4-hole Gasoline Injectors (4공 가솔린 분사기의 2중 분무 사이에서 연료 액적들의 유동특성)

  • Kim, Won-Tae;Kang, Shin-Jae;Rho, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.484-495
    • /
    • 2003
  • This study investigates the flow characteristics of fuel droplets between twin spray for the 4-hole injector used a 4-valve gasoline engine. The injectors for this study were the three types of 4-hole gasoline injector in which orifice diameter was 0.24mm. The spray behavior of twin spray was investigated by means of visualization employed stroboscope. A PDPA system was employed to simultaneously measure the size and velocity of fuel droplets. The 3 dimensional mean velocities. droplet size distributions, SMD and joint probability density function of velocity and droplet size are analyzed at the center of the spray and the center region of twin spray. As a result, the configurations of injector exit such as orifice interval and length of outlet, are very important factors that affect the flow characteristics of fuel droplets at the center region of twin spray.

Spray and Atomization Technologies in Pesticides Application: A Review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.1-13
    • /
    • 2001
  • In the pesticides sprays, spray and atomization technologies to increase the deposition and reduce the drift are briefly reviewed. Further research is needed to deduce a measure of drift risk in sprays with different structures, velocity profiles. For flat fan nozzles, the data of breakup length and thickness of liquid sheet are essential to understand the atomization processes and develop the transport model to target. In the air-assisted spray technology to reduce drift, further works on the effect of application height on drift and air assistance on droplet size should be followed. In addition, methods for quantifying included air in the air inclusion techniques are required. A few researches on the droplet size of fallout can be found in the literature. A combined technology with electrostatic method into one of method for the reduction of drift may be an effective strategy for increasing deposition and reducing drift.

  • PDF

An Experimental Study on Structure of Twin-Fluid Spray with Air Entrainment (공기 유입을 고려한 2유체 분무의 구조에 관한 실험적 연구)

  • Chae, Hyo-Cheol;Kim, Dong-Il;Oh, Sang-Heun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.925-930
    • /
    • 2000
  • This paper is investigated the entrainment of air into sprays which has significant effects on the combustion efficiency, stability of flame using the air-assisted twin-fluid nozzle in non-burning. The factors which may be expected to affect the entrainment of air by a liquid spray are: Relative velocity of droplet and ambient gas; Drop size and size distribution; Density and other property of the liquid. Here, axial, radial velocity and turbulent kinetic energy of spray droplet was measured with the PIV(Particle Image Velocimetry). Spray characteristics were also visualized using CCD camera. The results indicate that the entrainment rate increases more or less non-linearly with the downstream region.

  • PDF

Effect of the Swirler Angle and Aspect Ratio of Nozzle on the Mean Velocity and SMD of Twin Sprays (노즐의 스월러각과 형상비가 이중분무의 평균속도와 입경의 크기에 미치는 영향)

  • Kim, Young-Jin;Jung, Ji-Won;Choi, Gyoung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1459-1466
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single and twin spray. The characteristics of sprays have been investigated by measuring the spray angle, droplet size and velocity. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber, but for the twin spray, the axial velocity and SMD were not influenced significantly by the changing the aspect ratio of swirl chamber. The effect of swirler angle on the spray characteristics was greater than the aspect ratio of swirl chamber for single spray. The nozzle pitch was one of the important factors affecting the spray characteristics of twin spray.

Breakup Characteristics of Fuel Droplet Including Nanoparticles (나노 입자가 포함된 연료 액적의 분열 특성 연구)

  • Lee, Jae Bin;Shin, Dong Hwan;Lee, Min Jung;Kim, Namil;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.192-196
    • /
    • 2012
  • This paper reports on breakup characteristics of fuel droplet which includes metal nanoparticles. In order to develop a new injection system for nanoparticle-coated layers overcoming the conventional flame spray system, fundamental experiments were conducted to examine the interaction between a fuel droplet with nanoparticles and the external energy induced by the laser. In the experiments, this study used nickel nanoparticles whose size was under 100 nm to mix with kerosene as the fuel, and utilized a syringe pump and a metal needle to inject a fuel droplet. In particular, the Nd-YAG laser was adopted to give additional energy to the nanoparticles for evaporation of a fuel droplet containing nanoparticles. When the laser energy as 96 mJ was irradiated during the injection, it was observed that such an explosive evaporation occurred to break up a fuel droplet including nanoparticles, making the rapid increase in the ratio surface area to liquid volume. From this work, we suggest the possibility that the laser energy can be used for rapid evaporation of a fuel droplet.