• Title/Summary/Keyword: spot weld

Search Result 294, Processing Time 0.026 seconds

A Study on the Quality Estimation of Resistance Spot Welding Using Hidden Markov Model (은닉 마르코프 모델을 이용한 저항 점용접 품질 추정에 관한 연구)

  • 김경일;최재성
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.45-45
    • /
    • 2002
  • This study is a middle report on the development of intelligent spot welding monitoring technology applicable to the production line. An intelligent algorithm has been developed to predict the quality of welding in real time. We examined whether it is effective or not through the In-Line and the Off-Line tests. The purpose of the present study is to provide a reliable solution which can prevent welding defects in production site. In this study, the process variables, which were monitored in the primary circuit of the welding, are used to estimate the weld quality by Hidden Markov Model(HMM). The primary dynamic resistance patterns are recognized and the quality is estimated in probability method during the welding. We expect that the algorithm proposed in the present study is feasible to the applied in the production sites for the purpose of in-process real time quality monitoring of spot welding.

A Study on the Quality Estimation of Resistance Spot Welding Using Hidden Markov Model (은닉 마르코프 모델을 이용한 저항 점용접 품질 추정에 관한 연구)

  • 김경일;최재성
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.769-775
    • /
    • 2002
  • This study is a middle report on the development of intelligent spot welding monitoring technology applicable to the production line. An intelligent algorithm has been developed to predict the quality of welding in real time. We examined whether it is effective or not through the In-Line and the Off-Line tests. The purpose of the present study is to provide a reliable solution which can prevent welding defects in production site. In this study, the process variables, which were monitored in the primary circuit of the welding, are used to estimate the weld quality by Hidden Markov Model(HMM). The primary dynamic resistance patterns are recognized and the quality is estimated in probability method during the welding. We expect that the algorithm proposed in the present study is feasible to the applied in the production sites for the purpose of in-process real time quality monitoring of spot welding.

Evaluation of Friction Spot Joining Weldability of Al Alloys for Automotive (마찰교반 점용접(FSJ)을 이용한 자동차용 Al 합금의 접합성 평가)

  • Cho, Hyeon-Jin;Kim, Heung-Ju;Cheon, Chang-Keun;Chang, Woong-Seong;Bang, Kook-Soo
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.50-55
    • /
    • 2006
  • In an attempt to optimize friction spot joining process of Al alloys for automobiles, effects of joining parameters such as tool rotating speed, plunging depth, and joining time on the joints properties were investigated. A wide range of joining conditions could be applied to join Al alloys for automobile without defects in the weld zone except for certain welding conditions with a lower heat input. For sound joints without defects, tensile shear strength of joints was higher than acceptable criteria of tensile shear strength of resistance spot welded joints for aluminum.

Implementation of Dynamic Resistance Database for Weld Quality Improvement of Inverter Spot Welder (인버터 스폿용접기의 용접품질 향상을 위한 동저항 데이터베이스 구축)

  • 김재문;원충연;최규하;김규식;목형수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.294-303
    • /
    • 1999
  • Resistance spot welding is commonly used for welding products of high quality because of clean welding and short w welding-time. But. conventional spot welders bring about the depreciation of welding products, iuespective of dynamic r resistance characteristics during welding time. This paper discussed dynamic resistance database implementation in t terms of welding performance improvement. On different welding conditions, we compared dynamic resistance, r respectively, about pure iron and Sn-Pb alloy on Copper. Also, it investigated the relation of tensile shear strength and d dynamic resistance in welded workpiece.

  • PDF

The Evaluation and Optimization of Welding Qualities in the RSW(Resistance Spot Welding) Process Using the Servo Controlled Gun

  • Park, Yeong-Je;Cho, Hyung-Suck;Park, Ji-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.46.6-46
    • /
    • 2001
  • A servo gun welding system having a AC servo motor and a PC control system is presented for the improvement of quality control in the spot welding. The spot welding process is composed of the press stage, the weld stage, and the hold stage. The changes of gun press forces according to three stages in the spot welding process are controlled and measured through the load cell in order to know the influence on the welding quality. The relation between the measured force changes according to three stages and welding qualities is also implemented on the multilayer perceptrons, one of supervised learning method of neural network, which are powerful for realization of complex mapping characteristics. The estimated results and ...

  • PDF

Assessment of Resistance Spot Weldability of Dissimilar Joints of Austenitic Stainless Steels/IF Steels and Ferritic Stainless Steels/IF Steels (페라이트계 및 오스테나이트계 스테인리스강과 IF강의 이종 접합부의 저항 점 용접성 평가)

  • Lee, Jin-Beom;Kim, Dong-Cheol;Nam, Dae-Geun;Kang, Nam Hyun;Kim, Soon-Kook;Yu, Ji-Hun;Rhym, YoungMok;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • The spot weldability of dissimilar metal joints between austenitic stainless steels (STS316)/IF steels and ferritic stainless steels (STS430)/IF steels was investigated. This study was aimed to determine the spot welding parameters for a dissimilar metal joint and to evaluate the dissimilar metal joint's weldability, including its welding nugget shape, tensile-shear strength, hardness, and microstructure. The comparison of these results was described in terms of fracture behavior. Compared with the weld lobe of similar metal joints, dissimilar metal joints (STS430/IF) had reduced weld current range. However, the weld lobe of STS316/IF steel joint showed increased weld current range. This is because the dilution of chemical composition in the molten weld pool suppressed the heat input being caused by Joule heat with current flow through the samples. The microstructure of the fusion zone was fully martensite and mixture of ferrite and martensite for austenitic stainless steel/IF steel and ferritic stainless steel/IF steel combination, respectively. The experimental results showed that the shape of nugget was asymmetric, in which the fusion zone of the austenitic and ferritic stainless steel sheet was larger due to the higher bulk-resistance. The predicted microstructure by using the Schaeffler diagram was well matched with experimental results. After peel test, the fracture was initiated from heat affected zone of ferritic stainless steel sheet side, however the final fracture was propagated into the IF steel sheet side due to its lower strength.

Effect of Pulse Shapes on Weld Defects in Pulsed Laser Welding of Stainless Steel

  • Kim, Jong-Do;Kil, Byung-Lea;Kim, Young-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1270-1278
    • /
    • 2004
  • This paper describes the effectiveness of laser pulse shaping in eliminating weld defects such as porosity, cracks and undercuts in pulsed Nd:YAG laser welding. A large porosity was formed in a keyhole mode of deeply penetrated weld metal of any stainless steel. Solidification cracks were present in STS 310S with above 0.017%P and undercuts were formed in STS 303 with about 0.3%S. The conditions for the formation of porosity were determined in further detail in STS 316. With the objectives of obtaining a fundamental knowledge of formation and prevention of weld defects, the fusion and solidification behavior of a molten puddle was observed during laser spot welding of STS 310S through a high speed video photographing technique. It was deduced that cellular dendrite tips grew rapidly from the bottom to the surface, and consequently residual liquid remained at the grain boundaries in wide regions and enhanced the solidification cracking susceptibility. Several laser pulse shapes were investigated and optimum pulse shapes were proposed for the reduction and prevention of porosity and solidification cracking.

Study on Hot Spot Stress Calculation for Welded Joints using 3D Solid Finite Elements (3차원 솔리드 요소를 이용한 용접부 핫스팟 응력 계산에 대한 연구)

  • Oh, Jung-Sik;Kim, Yooil;Jeon, Seok-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • Because of the high stress concentration near the toe of a welded joint, the calculation of local stress using the finite element method which is relevant to the fatigue strength of the weld toe crack, is a challenging task. This is mainly caused by the sensitivity of finite element analysis, which usually occurs near the area of a dramatically changing stress field. This paper presents a novel numerical method through which a less mesh-sensitive local stress calculation can be achieved based on the 3D solid finite element, strictly sticking to the original definition of hot spot stress. In order to achieve the goal, a traction stress, defined at 0.5t and 1.5t away from the weld toe, was calculated using either a force-equivalent or work-equivalent approach, both of which are based on the internal nodal forces on the imaginary cut planes. In the force-equivalent approach, the traction stress on the imaginary cut plane was calculated using the simple force and moment equilibrium, whereas the equivalence of the work done by both the nodal forces and linearized traction stress was employed in the work-equivalent approach. In order to confirm the validity of the proposed method, five typical welded joints widely used in ships and offshore structures were analyzed using five different solid element types and four different mesh sizes. Finally, the performance of the proposed method was compared with that of the traditionally used surface stress extrapolation method. It turned out that the sensitivity of the hot spot stress for the analyzed typical welded joints obtained from the proposed method outperformed the traditional extrapolation method by far.

A Comparative Study of Weldable Current Range on AC and MFDC Resistance Spot Welding for 440 MPa Grade Steel Sheet (440 MPa급 도금강판의 저항 점 용접 시 AC 및 MFDC전원에 따른 가용전류구간 비교 연구)

  • Ji, Changwook;Park, Chansu;Kim, Chiho;Cho, Yongjoon;Oh, Dongjin;Kim, Myung-Hyun;Kim, Yang-Do;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.34-42
    • /
    • 2017
  • This paper presents a comparative study of the AC and MFDC resistance spot welding process with consideration of sheet thickness. The previous studies have confirmed that there is difference in the optimum welding current and expulsion current with AC and MFDC. The aim of this study was revealing the effect of sheet thickness on weldable current range and expulsion behavior for AC and MFDC welding processes. The optimum welding current of AC was lower (1.6 kA) than MFDC welding process in 0.8 mm sheet thickness. Early nugget growth being caused by the peak current of AC developed weld interface deformation, which resulted in suppressing the growth of corona bond and occurrence of low current expulsion. The resistance spot welding for thicker sheet (1.4 mm) required lower current of 0.6 kA for the expulsion on the MFDC welding process. The growth of contact diameter (size of corona bond) and button diameter was linear up to the expulsion current with MFDC welding process. Therefore, more attention is required when the AC and MFDC resistance spot welding process is applied for different thickness of steel sheet combination for automotive application.

Rational Reduction of the Number of Spot Welds in the Vehicle Body Considering Durability (내구도를 고려한 차체 용접점의 합리적 감소 방안)

  • Choi, Noo-Ri;Ju, Byeong-Hyeon;Byun, Hyung-Bai;Kim, Dong-Seok;Lee, Byung-Chai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2007
  • We suggest a design method for reducing the number of spot welds in the vehicle body in terms of durability. To reduce the number of spot welds, we use the DOE(Design of Experiments) analysis with two influence indices for the durability and the fatigue life of a spot weld itself. Through the suggested design method, we select spot welds that could be removed without serious reduction of durability of the whole model. We apply this new methodology to the BIW(Body In White) model of a vehicle by choosing some practical parts where durability-related point of view must be considered importantly by experience.