• 제목/요약/키워드: sports utility vehicle

검색결과 25건 처리시간 0.023초

SUV차량의 Idle 성능 개발 (Idle Vibration Development Procedure of 4WD SUV)

  • 최승우;이남영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.120-124
    • /
    • 2003
  • NVH issue at idle condition is one of the major concerns of Passenger and Commercial Vehicle including Sports Utility Vehicle Especially steering wheel vibration at idle condition is a very complex problem and affected by firing frequency of the engine, stiffness of a steering wheel system and the body to which the steering wheel system is attached. To avoid vibration mode coupling between each system of a vehicle, experimental and analytical method has been used at the pre-prototype stage. The resonance frequency of the body and the frame has been decoupled by CAE and the resonance frequency of steering wheel system has been set in between the 1st bending frequency of body and frame. These Results has been used as design guidelines tot the prototype drawing stage. The experimental verification of tile modified pre-prototype vehicle shows good results of the vibration mode decouple. Modal test of prototype vehicle also confirms the vibration mode decouple between each system.

  • PDF

경험적 접근법과 동역학적 특성에 기반한 4WD 차량의 제어 전략 개발 (Control Strategy Development of 4WD Vehicles based on Heuristic Approach and Dynamic Characteristic)

  • 함형진;이형철
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.209-217
    • /
    • 2013
  • This paper presents a control strategy of 4 wheel drive (4WD) vehicles. Proposed control strategy has simple structure and can easily apply to various vehicles with low cost and time. It is consist of feedforward control for traction ability, fedback control for minimizing the wheel speed difference and yaw control for lateral stability. In addition, to integrate the traction and stability control, a blending function is applied. To evaluate the feasibility of the proposed control strategy, actual vehicle experiment is conducted after deciding the tuning parameter through the simulation. The simulation is accomplished by CarSim and Matlab/Simulink and the actual vehicle test is conducted using full size Sports Utility Vehicle (SUV) equipped rear wheel based solenoid type 4WD device.

U-turn 설치를 위한 적정 폭원에 관한 연구 (A Study on Appropriate Breadth for U-turn Setup)

  • 이진욱;김기혁
    • 대한교통학회지
    • /
    • 제27권3호
    • /
    • pp.39-47
    • /
    • 2009
  • 교통안전시설 실무편람에 의하면 현재 U-Turn 설치 가능한 지점으로 최소폭원을 '편도 폭 9m 이상'의 지점으로 하고 있으며, U-Turn 허용차량은 승용차로 제한하는 것을 원칙으로 하도록 규정하고 있다. 그러나 최근 대형화된 승용차와 보편화된 SUV(sports utility vehicle)차량이 한번에 U-Turn을 완료하지 못하면서 교통소통과 교통안전에 문제를 야기시키고 있다. 본 연구에서는 실제 차량을 이용한 U-turn 회전반경의 실차 조사치와 교통사고 재현 프로그램인 PC-Crash에 의한 예측치를 비교 검정한 후 PC-Crash를 이용하여 국내 승용차에 대해 U-turn 회전반경에 대해서 예측하고 U-Turn 설치를 위한 적정 폭원으로 제시하였다.

HEV용 e-4WD 구동을 위한 매입형 영구자석 동기전동기의 특성해석 및 시험 (Characteristic Analysis and Test of IPMSM for e-4WD of the Hybrid Electric Vehicle)

  • 정수진;이주
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.777-784
    • /
    • 2016
  • In this paper, the performance design and analysis for an Interior Permanent-Magnet Synchronous Motor (IPMSM) that will be used as a traction motor in the e-4WD system of hybrid SUV(Sports Utility Vehicle) and RV(Recreational Vehicle), are investigated using finite element method. In order to improve the accuracy of design, the tolerances of parts and assemblies as well as the material properties of permanent magnet, stator, rotor and winding etc. are considered under the conditions similar to real driving state of motor. Both no load performance test and maximum load performance test, in which real driving state and cooling condition have been considered, are also implemented via proto sample build to verify the validity of motor's performance design.

전복 안정성을 고려한 SUV 현가장치 파라미터의 최적설계 (Optimum Design of SUV Suspension Parameters Considering Rollover Stability)

  • 이상범;장영진;임홍재;나도백
    • 한국생산제조학회지
    • /
    • 제18권4호
    • /
    • pp.410-416
    • /
    • 2009
  • In recent years, the rollover accident of large class of vehicles has become important safety issue. Even though the rollover form a small percentage of all traffic accidents, they have a fatal effect upon the driver and passenger. Among the traffic accidents occurred in driving, the rollover is the major cause of traffic fatalities. Therefore, it is required to develop the analytical and experimental techniques for predicting rollover propensity of vehicles and also to improve the vehicle suspension design in the viewpoint of rollover resistance. In this study, the parameter sensitivities for the roll angle of SUV suspension are analyzed, and then the determined design parameters are optimized by using the regression model function of the response surface methods. The analysis results show that the roll angle of the optimized vehicle is decreased as compared with the initial vehicle and also the rollover possibility is decreased when the roll rate of the front suspension is larger than the roll rate of the rear suspension.

  • PDF

MR댐퍼를 장착한 SUV의 조향으로 인한 롤 특성 평가 (Roll Characteristics Evaluation due to the Steering of a SUV with MR Dampers)

  • 강인필;백운경
    • 동력기계공학회지
    • /
    • 제13권1호
    • /
    • pp.26-32
    • /
    • 2009
  • This study is about roll characteristics evaluation to show the advantage of using MR(magneto-rheological) dampers for steering of a SUV(sports utility vehicle). Roll characteristics is very important to observe the roll-propensity of the SUV. ADAMS/Car program was used to simulate the basic steering motion, using 63 D.O.F. vehicle model. Sky-Hook and Ground-Hook control algorithms were used as a semi-active suspension system controller. The roll characteristics from the steering motion were compared between the simulation results from the semi-active suspension system and the passive suspension system.

  • PDF

선호 차종별 자동차 네비게이션 시스템의 감성평가 (Sensibility Evaluation for Car Navigation System based on Vehicle-type Preference)

  • 박성준;김성훈
    • 한국산업정보학회논문지
    • /
    • 제9권3호
    • /
    • pp.71-79
    • /
    • 2004
  • 자동차의 급격한 증가로 인하여 교통 정체현상이 날로 심해짐에 따라 운전자에게 보다 안전하고 쾌적한 운전 편의성을 제공하기 위한 방법으로 차량항법장치(CNS)가 제안되었으며, 최근에 출시되는 많은 차량에 카 네비게이션 시스템이 장착되고 있다. 또한 네비게이션 시스템이 단순한 차량 항법 장치로서의 위치를 넘어 차량 내 멀티미디어 시스템으로서의 기능을 감당하고 있으며, 이에 따라 자동차 내장(Interior)의 중요한 부품으로 인식되고 있다. 따라서 기능뿐만 아니라 사용성과 외형적 디자인 역시 소비자의 취향에 맞게 설계되어질 필요성이 있다. 본 연구에서는 자동차 내장 부품의 구성 요소로서의 카 네비게이션 시스템에 대하여 소비자들이 요구하는 감성요소가 무엇인지 파악해 보았다. 특히, 소비자들이 선호하는 차종에 따라 내장 부품의 감성 특성 역시 변화될 수 있으므로 차량 선호도에 기초하여 감성요소 분석을 실시하였으며, 소비자 특성별 감성 선호도 도출 기법으로서 다차원 척도법(MDS)기법의 효용성을 입증해보았다. 정통적인 세단 형태의 차종을 선호하는 사람의 경우, 네비게이션 시스템에 대하여 고급감, 조화감, 재질감을 요구하였으며, 스포츠카를 선호하는 사람의 경우는, 팬시감, 개성감, 역동감을, SUV와 MPV를 선호하는 사람의 경우는 견고감과 역동감, 편의감을 중요시하는 것으로 분석되었다.

  • PDF

측면 단동 릴리즈 시스템을 이용한 자동차용 루프 캐리어 개발 프로세스 (The Development Process of Vehicle Roof Carrier using One Side Release System)

  • 장동환;고병두;이인철
    • 한국정밀공학회지
    • /
    • 제27권5호
    • /
    • pp.56-62
    • /
    • 2010
  • This paper presents the development process of roof carrier assembly using a one side release system for a vehicle. An RV(Recreational Vehicle) or SUV(Sports Utility Vehicle) has a roof carrier system on an upper surface of a roof panel for loading large or long size baggage. Such a roof carrier system is comprised of a roof rack longitudinally mounted on a roof panel and cross bar perpendicularly installed in the horizontal direction. Several locking mechanisms used in most vehicle roof carrier systems are composed with both side releasable locking ones. The obvious drawback to this arrangement is that when the user desires to reposition the cross bar, first one of the locking members must be unlocked and then the user must walk around to the opposite side of the vehicle to unlock the other member. In this paper, we proposed a newly locking mechanism, which allows a user simultaneously place both locking members of the roof carrier in locked and unlocked positions. In order to estimate design compatibility, structural and modal analysis is performed. Furthermore, a prototype based on the proposed design has been made, and then durability test carried out. From the simulation and experimental results, the proposed roof carrier system is proved effective and safe.

전륜 제동력 및 전륜 조향각을 이용한 SUV 차량의 통합운동제어시스템 개발 (Integrated Dynamics Control System for SUV with Front Brake Force and Front Steering Angle)

  • 송정훈
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.22-27
    • /
    • 2022
  • An integrated front steering system and front brake system (FSFB) is developed to improve the stability and controllability of an SUV. The FSFB simultaneously controls the additional steering angle and front brake pressure. An active front steering system (AFS) and an active front brake system (AFB) are designed for comparison. The results show that the FSFB enhances the lateral stability and controllability regardless of road and running conditions compared to the AFS and AFB. As a result, the yaw rate of the SUV tracks the reference yaw rate, and the side slip angle decreases. In addition, brake pressure control is more effective than steering angle control in improving the stability and steerability of the SUV on a slippery road. However, this deteriorates comfort on dry or wet asphalt.

중형트럭에서 발생하는 배출가스 중 미량유해물질 발생 특성 연구 (A Study on the MSATs (Mobile source Air Toxics) Contribution from MDTs (Medium-duty Trucks) Exhaust Emission)

  • 임윤성;문선희;이종태;동종인
    • 한국분무공학회지
    • /
    • 제24권1호
    • /
    • pp.21-26
    • /
    • 2019
  • In Korea, Medium-duty trucks are classified into GVW (Gross Vehicle Weight) 3.5~10tons. MDTs are mostly used for logistics or delivery between regions. There have been studied on diesel fuel vehicles for SUVs(Sports Utility Vehicle) or light-duty trucks. But MDTs have been not studied. Therefore, this study have been used MDTs for characteristic exhaust emission. Test was carried out using the certification test mode (NEDC, New European Driving cycle) and the NIER mode in chassis dynamometer of the MDTs. And emission gas was analyzed for PN (Particulate Number), PN size distribution and aldehydes, VOCs (Volatile Organic Compounds), PAHs (Polycyclic Aromatic Hydrocarbons). This paper concluded that EURO-IV trucks produced more MSATs than EURO V trucks. Depending on the engine temperature, more MSATs were generated in cold temperature than in the hot start operation. However, the driving speed, the opposite results was obtained.