• Title/Summary/Keyword: sport shoes

Search Result 114, Processing Time 0.032 seconds

Finite Element Analysis for the Landing Impact Evaluation of Court Sport Shoes (코트 스포츠화의 착지충격 평가를 위한 유한요소 해석)

  • Kim, Seong-Ho;Cho, Jin-Rae;Ryu, Sung-Heon;Choi, Joo-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.438-443
    • /
    • 2004
  • Court sport shoes is consisted of several functional parts such as soles, upper and midfoot reinforcements. Currently, intensive research for court sport shoes considering functional parts is in progress world widely, but the shoes design relies only on the view point of kinesilogy and biomechanics until now. Thus, more scientific and reliable evaluation of shoes characteristics is definitely required. In this paper, we evaluate the landing impact of court sport shoes by using finite element method. We construct a shoes-leg coupled FEM model which can simulate effectively impact in running mode. From the numerical analysis results, the designer can establish the advanced design concepts and build up the detailed design standard for the specific court sport shoes under consideration.

  • PDF

Evaluation of Landing Impact Force of Court Sport Shoes at Running by Finite Element Analysis (유한요소 해석을 통한 코트 스포츠화의 런닝시 충격력 평가)

  • Kim, Seong-Ho;Cho, Jin-Rae;Ryu, Sung-Heon;Choi, Joo-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.498-503
    • /
    • 2004
  • A fundamental function of court sport shoes has been considered as the protection of human feet from unexpected injuries. But, recently its role for improving the playing competency is being regarded as a more important function. In connection with this situation, intensive efforts are being world-widely forced on the development of court sport shoes proving the excellent playing competency, by taking kinesiology and biomechanics into consideration. However, the success of this goal depends definitely on the shoes design based upon the reliable evaluation of shoes functional parts. This paper addresses the application of finite element method to the evaluation of landing impact force of court sport shoes. In order to reflect the coupling effect between leg and shoes accurately and effectively, we construct a fully coupled shoes-leg FEM model which does not rely on the independent experimental data any more. Through the numerical experiments, we assess the reliability of the coupled FEM model by comparing with the experimental results and investigate the landing impact characteristics of court sport shoes.

  • PDF

Evaluation of Landing Impact Force of Court Sport Shoes by Finite Element Method (유한요소법을 이용한 코트 스포츠화의 착지 충격력 평가)

  • Kim, Seong-Ho;Ryu, Sung-Heon;Choi, Joo-Hyung;Cho, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1786-1793
    • /
    • 2004
  • A fundamental function of court sport shoes was considered as the protection of human feet from unexpected injuries. But, recently its role for improving the playing competency has been regarded as of more importance. In connection of this situation, intensive efforts are world-widely forced on the development of court sport shoes proving the excellent playing competency by taking kinesiology and biomechanics into consideration. However, the success of this goal depends definitely on the shoes design based upon the reliable evaluation of shoes functional parts. This paper addresses the application of finite element method to the evaluation of landing impact force of court sport shoes. In order to reflect the coupling effect between leg and shoes accurately and effectively, we construct a fully coupled shoes-leg FEM model which does not rely on the independent experimental data any more. Through the numerical experiments, we assess the reliability of the coupled FEM model by comparing with the experimental results and investigate the landing impact characteristics of court sport shoes.

Numerical Analysis of Impact Force Transfer Characteristics of Court Sport Shoes to Surface Condition (지면조건에 따른 코트 스포츠화 착지 충격력의 전달특성 수치해석)

  • 류성헌;최주형;김성호;부진후;조진래
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1974-1981
    • /
    • 2004
  • This paper is concerned with the numerical investigation of the transfer characteristics of the landing impact force exerted on court sport shoes to the sport surface condition. The reaction force occurred by the impact between court sport shoes and sport surface is absorbed by shoes to some extent, but the remaining impact force is to transfer the human body from the sole of a foot. We consider four surface conditions, asphalt, urethane, clay and wood court surfaces. For the dynamic response analysis, we construct a coupled leg-shoes FEM model and create the multi-layered composite surface model. The numerical simulations are performed by an explicit nonlinear finite element method. Through the numerical experiments, we examine the transfer characteristics of the landing impact force to the surface condition.

Evaluation of Landing Impact Characteristics of Sport Shoes in Running by finite Element Analysis (유한요소 해석을 통한 스포츠화의 런닝 시 착지충격 특성평가)

  • Kim, Sung-Ho;Cho, Jin-Rae;Lee, Shi-Bok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.217-225
    • /
    • 2009
  • Recently, intensive research efforts are world-widely forced on the development of sport shoes improving both the injury protection and the playing performance by taking kinesiology and biomechanics into consideration. However, the success of this goal depends definitely on the reliable evaluation of the dynamic responses of sport shoes and human foot, particularly the landing impact characteristics. It is because the landing impact force is a main source of unexpected injuries and influences the playing performance in court sport activities. This paper addresses the application of finite element method to the evaluation of landing impact characteristics of barefoot and several representative court sport shoes in running. In order to accurately reflect the coupling effect between human foot and shoes accurately, we construct a fully coupled three-diemensional foot-shoe FEM model which does not rely on the independent experimental data any more. Through the numerical simulation, we assessed the reliability of the numerical FEM model by comparing with the experimental results and investigated the landing impact characteristics, such as GRF, MIF, acceleration and frequency responses, of representative court sport shoes.

Finite Element Analysis of Impact Characteristics of Shoes-Leg Coupled Model to landing Mode (착지모드에 따른 신발-족 연계모델의 충격특성 유한요소 해석)

  • Ryu Sung-Heon;Kim Sung-Ho;Cho Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1191-1198
    • /
    • 2005
  • This paper is concerned with the numerical investigation of the landing impact characteristics of sport shoes to the landing mode. In most court sport activities, jumping and landing are fundamental motions, and the landing motion is largely composed of forefoot and rearfoot landing modes. Since the landing impact may, but frequently, lead to unexpected injuries of players, the investigation of its characteristics and the sport shoes design for reducing it are of a great importance. To investigate the landing impact characteristics to the landing mode, we construct a shoes-leg coupled model and carry out the numerical simulation by an explicit finite element method.

The Effects of Running Shoes' Midsole Properties on Impact and Lower Extremity Joint's Dynamic Stability

  • Ryu, Sihyun;Gil, Ho-Jong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.290-296
    • /
    • 2021
  • Objective: The purpose of this research is to examine the effects of three types of different running shoes with different properties on impact variables (PVRGF and VLR) and the lower extremity joint's dynamic stability variables (LyEs of DPA, IEA, FEA, DPAV, IEAV, and FEAV) during running. Method: The participants in this research were 12 males (Age: 22.0 ± 3.3 years, Height: 177.2 ± 4.1 cm, Weight: 74.3 ± 9.6 kg). One type of N company's running shoes and two types (FA, FB) of F company's running shoes were used. As for the properties of the running shoes, thickness (mm), dwell time (ms), peak acceleration (m/s2), and energy return (%) were measured. The motions running at 3.5 m/s on a treadmill (Instrumented treadmill, Bertec, USA) wearing each type of running shoes were analyzed. Results: Although the VLR of the thick running shoes (FB) was smaller than that of the other running shoes (N, FA), the LyEs of PVGRF and DPA were larger (p<.05). Even though the running shoes' dwell time (i.e., impact absorption time) and peak acceleration showed a positive correlation with the LyEs of DPAV, IEAV, and FEAV, the energy return showed a negative correlation (p<.05). Conclusion: Our results indicated that the running shoes with excellent impact absorption function are predicted to be suitable for running beginners who need to reduce the burden of the lower extremity joint during running. The running shoes with excellent energy return are expected to be suitable for mid-and long-distance running elite athletes or marathoners to whom stability and consistency are essential during running.

The Kinematic Analysis According to a Dancesport Heel-Shoes Type on Rumba Cucarachas Movement Change (댄스스포츠 구두 굽 유형에 따른 룸바 쿠카라차 동작 변화에 대한 운동학적 분석)

  • Choi, In-Ae
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.125-135
    • /
    • 2006
  • This study was to analyze the effect of dancesport heel-shoes heights on Rumba Cucarachas Movement in terms of analysis, and to provide the essential information to decide the proper heel-shoes heights for individual. six female subjects participated in this study. Dependent variables were set and divided into the amount of movement regarding the velocity and angle of the right elbow, pelvis, ankle, and knee. The following conclusion was drawn blow. 1) Angle: We all appeared in 5, 7, 9cm heel height so that we were similar in a knee and elbow angle and no significantly. The plantar flexion appeared greatly as an ankle angle's shoe high and significantly. 2) Velocity: An elbow velocity all appeared in a three shoes so that it was similar. We speed fast speed some in a 7cm heel height. A knee velocity expressed fast speed some in a 5cm heel height. The pelvis velocity in a that it was similar. Generaly, The aspect to be a dancesport competition o'clock and aesthetic is the height. and the muscular strength train after we need the thing to choose suitable to the individual shoe height. It is logical that the decision of heel-shoes heights should be made by anthropometric and sport dynamic analysis in order to maximize the dynamic and aesthetic aspect of dance sport.

Consumers' Motivations for Brand-Switching of Sport Shoes according to Their Age and Gender

  • Yim, Eun-Jin;Hwang, Choon-Sup
    • Journal of Fashion Business
    • /
    • v.13 no.6
    • /
    • pp.111-124
    • /
    • 2009
  • The purpose of the study was to provide the basic information that is needed to build marketing strategies related to consumers' brand-switching, through investigation into sport shoe consumers' motivations for brand-switching, as determined by their age and gender. The study was implemented by means of a descriptive survey method using a questionnaire. The sample consisted of 534 consumers between the ages of 13 and 59, residing in the Seoul area. The survey for the study was conducted during the period of October 10 through December 5, in 2008. Descriptive statistics, t-test, ANOVA and Duncan's Test were employed for the analysis of data gathered. The results revealed that there are differences with regard to the degree that the functional/aesthetic factors of sport shoes contribute to the motivation for brand-switching, when assessed with respect to the age and gender of consumers. The contributory degrees of situational factors and social/emotional curiosity factors of consumers are also different with regard to the motivation for brand-switching behavior of sport shoe consumers in accordance with their age and gender. Therefore, marketing strategies related to brand-switching behavior will be more effective when they are differentiated according to the target age and gender, even with respect to the same type of product, such as sport shoes.

Analysis of Domestic and International Biomechanics Research Trends in Shoes: Focusing on Research Published in 2015-2019 (신발 분야 국내외 운동역학 연구동향 분석: 2015-2019년에 발간된 연구를 중심으로)

  • Back, Heeyoung;Yi, Kyungock;Lee, Jusung;Kim, Jieung;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.2
    • /
    • pp.185-195
    • /
    • 2020
  • Objective: The purpose of this study was to identify recent domestic and international research trends regarding shoes carried out in biomechanics field and to suggest the direction of shoe research later. Method: To achieve this goal of research, the Web of Science, Scopus, PubMed, Korea Education and Research Information Service and Korean Citation Index were searched to identify trends in 64 domestic and international research. Also, classified into the interaction of the human body, usability evaluation of functional shoes, smart shoe development research, and suggested the following are the suggestions for future research directions. Conclusion: A study for the coordination of muscle activity, control of motion and prevention of injury should be sought by developing shoes of eco-friendly materials, and scientific evidence such as physical aspects, materials, floor shapes and friction should be supported. Second, a study on elite athletes in various sports is needed based on functional shoes using new materials to improve their performance along with cooperation in muscle activities and prevention of injury. Third, various information and energy production are possible in real time through human behavioral information, and the application of Human Machine Interface (HMI) technology through shoe-sensor-human interaction should be explored.