The aim of this study is to observe the trend of discourse study in language education and analyze the main issues by investigating the literatures related to discourse in Korean language education in the last ten years. This study observed the discourse study conducted in Korean language education from the perspectives of study subject, study method and study data. Moreover, based on the results, it estimated the achievements and effectiveness of the discourse study conducted in Korean language education. The subject of discourse study was mainly dealt with discourse function, discourse pattern, discourse marker, discourse structure. In the study methods, analysis of corpus and survey were mainly used as the study methods, and spoken corpus, written corpus and semi-spoken corpus were used as study materials. In particular, the semi-spoken corpus was used at a very high rate among them. This showed that discourse study in Korean language education was mainly focused on spoken corpus study. This study divided the detailed field of Korean language education into four fields of linguistic knowledge, communication function, teaching activities and learning activities, and observed the trends of discourse study in each field. Overall, it was recognized that relatively many studies were focused on linguistic knowledge, particularly in pragmatic perspective. It can be said that the study based on discourse has a language educational effectiveness in that it is based on actual data and improves practical communication skills in the environment of various languages.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.87-90
/
2002
This paper analyzes statistically the relationship between size and balance of text corpus by evaluation of the effect of interview sentences in language model for Korean broadcast news transcription system. Our Korean broadcast news transcription system's ultimate purpose is to recognize not interview speech, but the anchor's and reporter's speech in broadcast news show. But the gathered text corpus for constructing language model consists of interview sentences a portion of the whole, $15\%$ approximately. The characteristic of interview sentence is different from the anchor's and the reporter's in one thing or another. Therefore it disturbs the anchor and reporter oriented language modeling. In this paper, we evaluate the effect of interview sentences in language model for Korean broadcast news transcription system and analyze statistically the relationship between size and balance of text corpus by making an experiment as the same procedure according to varying the size of corpus.
K-SEC (Korean-Spoken English Corpus) is a kind of speech database that is being under construction by the authors of this paper This article discusses the needs of the K-SEC from various academic disciplines and industrial circles, and it introduces the characteristics of the K-SEC design, its catalogues and contents of the recorded database, exemplifying what are being considered from both Korean and English languages' phonetics and phonologies. The K-SEC can be marked as a beginning of a parallel speech corpus, and it is suggested that a similar corpus should be enlarged for the future advancements of the experimental phonetics and the speech information technology.
Jung, Sang-Keun;Lee, Cheong-Jae;Lee, Gary Geun-Bae
MALSORI
/
no.63
/
pp.101-112
/
2007
Spoken dialog system development includes many laborious and inefficient tasks. Since there are many components such as speech recognition, language understanding, dialog management and knowledge management in a spoken dialog system, a developer should take an effort to edit corpus and train each model separately. To reduce a cost for editing corpus and training each model, we need more systematic and efficient working environment. For the working environment, we propose DialogStudio as a spoken dialog system workbench.
To get more natural synthetic speech generated by a Korean TTS (Text-To-Speech) system, we have to know all the possible prosodic rules in Korean spoken language. We should find out these rules from linguistic, phonetic information or from real speech. In general, all of these rules should be integrated into a prosody-generation algorithm in a TTS system. But this algorithm cannot cover up all the possible prosodic rules in a language and it is not perfect, so the naturalness of synthesized speech cannot be as good as we expect. ANNs (Artificial Neural Networks) can be trained to learn the prosodic rules in Korean spoken language. To train and test ANNs, we need to prepare the prosodic patterns of all the phonemic segments in a prosodic corpus. A prosodic corpus will include meaningful sentences to represent all the possible prosodic rules. Sentences in the corpus were made by picking up a series of words from the list of PB (phonetically Balanced) isolated words. These sentences in the corpus were read by speakers, recorded, and collected as a speech database. By analyzing recorded real speech, we can extract prosodic pattern about each phoneme, and assign them as target and test patterns for ANNs. ANNs can learn the prosody from natural speech and generate prosodic patterns of the central phonemic segment in phoneme strings as output response of ANNs when phoneme strings of a sentence are given to ANNs as input stimuli.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.3
/
pp.357-362
/
2004
Language models are essential in predicting the next word in a spoken sentence, thereby enhancing the speech recognition accuracy, among other things. However, spoken language domains are too numerous, and therefore developers suffer from the lack of corpora with sufficient sizes. This paper proposes a method of combining two n-gram language models, one constructed from a very small corpus of the right domain of interest, the other constructed from a large but less adequate corpus, resulting in a significantly enhanced language model. This method is based on the observation that a small corpus from the right domain has high quality n-grams but has serious sparseness problem, while a large corpus from a different domain has more n-gram statistics but incorrectly biased. With our approach, two n-gram statistics are combined by extending the idea of Katz's backoff and therefore is called a dual-source backoff. We ran experiments with 3-gram language models constructed from newspaper corpora of several million to tens of million words together with models from smaller broadcast news corpora. The target domain was broadcast news. We obtained significant improvement (30%) by incorporating a small corpus around one thirtieth size of the newspaper corpus.
This study investigates how common English hedge expressions such as 'I think' and 'I guess' appear in Korean, with the aim of providing explicit explanation for English-speaking leaners of Korean. Based on a contrastive analysis of spoken English and Korean corpus, this study argues three points: Firstly, 'I guess' appears with a wider variety of modalities in Korean than 'I think'. Secondly, this study has found that Korean textbooks contain inappropriate use of registers regarding the English translations of '-geot -gat-': although these markers are used in spoken Korean, they were translated into written English. Therefore, this study suggests that '-geot -gat-' be translated into 'I think' in spoken English, and into 'it seems' in the case of written English and narratives. Lastly, the contrastive analysis has shown that when 'I think' is used with deontic modalities such as 'I think I have to', Korean use '-a-ya-get-': the use of hedge marker 'I think' with 'I have to', which shows obligation or speaker's volition turns the deontic modalities into expressions of speaker's opinion.
Spoken dialog system development includes many laborious and inefficient tasks. Since there are many components such as speech recognizer, language understanding, dialog management and knowledge management in a spoken dialog system, a developer should take an effort to edit corpus and train each model separately. To reduce a cost for editting corpus and training each models, we need more systematic and efficent working environment. For the working environment, we propose DialogStudio as an spoken dialog system workbench.
This paper describes the development and assessment of a hidden Markov model (HMM) based Tagalog speech synthesis system, where Tagalog is the most widely spoken indigenous language of the Philippines. Several aspects of the design process are discussed here. In order to build the synthesizer a speech database is recorded and phonetically segmented. The constructed speech corpus contains approximately 89 minutes of Tagalog speech organized in 596 spoken utterances. Furthermore, contextual information is determined. The quality of the synthesized speech is assessed by subjective tests employing 25 native Tagalog speakers as respondents. Experimental results show that the new system is able to obtain a 3.29 MOS which indicates that the developed system is able to produce highly intelligible neutral Tagalog speech with stable quality even when a small amount of speech data is used for HMM training.
Annual Conference on Human and Language Technology
/
1996.10a
/
pp.145-152
/
1996
연속음성인식 시스템을 개발하기 위해서는 언어가 갖는 문법적 제약을 이용한 언어모델이 요구된다. 문법적 규칙을 이용한 언어모델은 전문가가 일일이 문법 규칙을 만들어 주어야 하는 단점이 있다. 통계적 언어 모델에서는 문법적인 정보를 수작업으로 만들어 주지 않는 대신 그러한 모든 정보를 학습을 통해서 훈련해야 하기 때문에 이를 위해 요구되는 학습 데이터도 엄청나게 증가한다. 따라서 적은 양의 데이터로도 이와 유사한 효과를 보일 수 있는 것이 클래스에 의거한 언어 모델이다. 또 이 모델은 음성 인식과 연계시에 탐색 공간을 줄여 주기 때문에 실시간 시스템 구현에 매우 유용한 모델이다. 여기서는 자동으로 클래스를 찾아주는 알고리즘을 호텔예약시스템의 corpus에 적용, 분석해 보았다. Corpus 자체가 문법규칙이 뚜렷한 특성을 갖고 있기 때문에 heuristic하게 클래스를 준 것과 유사한 결과를 보였지만 corpus 크기가 커질 경우에는 매우 유용할 것이며, initial map을 heuristic하게 주고 그 알고리즘을 적용한 결과 약간의 성능향상을 볼 수 있었다. 끝으로 음성인식시스템과 접합해 본 결과 유사한 결과를 얻었으며 언어모델에도 음향학적 특성을 반영할 수 있는 연구가 요구됨을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.