• Title/Summary/Keyword: spoilage

Search Result 372, Processing Time 0.018 seconds

Effects of Added WPC and WP on the Quality and Shelf Life of Tofu (WPC 및 WP 첨가가 두부 품질 및 저장성에 미치는 영향)

  • Kim, Jong-Un;Song, Kwang-Young;Seo, Kun-Ho;Yoon, Yoh-Chang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.93-109
    • /
    • 2012
  • This study was performed to investigate the effects of added whey protein concentrates (WPC) and whey powder (WP) on the quality and shelf life of Tofu, a traditional food in Korea. Combined whey powder and whey protein concentrates were obtained at drainage after the casein was separated by using rennet enzyme or acidification of milk. We manufactured whey Tofu and evaluated its nutritional quality by testing, the general composition for yield, moisture, pH, crude protein, crude fat, carbohydrate, rheology, sensory properties, and change during storage. 1. The general compositions of WPC and WP were as follows: (a) WPC: moisture, 5.9%; crude protein, 56.2%; crude fat, 0.1%; carbohydrate, 32.6%; ash, 5.2%; and pH 5.93 and (b) WP: moisture, 3.7%; crude protein, 13.2%; crude fat, 1.6%; carbohydrate, 74.4%; ash, 7.1%; and pH, 6.65. 2. The yield of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=8:2 and (b) in WP, 2% addition was the highest (265%) at $13.3g/cm^2$, but with 4% addition WP was the lowest (184%) at $22.2g/cm^2$. 3. The moisture content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL = 6:4 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=8:2 and (b) in WP, 2% addition was the highest at 79.82% ($13.3g/cm^2$), but 4% was the lowest at 75.18% ($22.2g/cm^2$). 4. The pH of Tofu was as follows: (a) in WPC, the value was WPC 6% > WPC 4% > WPC 2% > control and $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=7:3 and (b) in WP, WP 4% > WP 2% > control. 5. The ash content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=9:1 and (b) in WP, there was no difference between 2% and 4% addition. 6. The crude protein content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=6:4 and (b) in WP, there was no difference between 2% and 4% addition. 7. The crude fat content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=6:4 and (b) in WP, values decreased with increasing pressed weight. 8. The carbohydrate content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=9:1 and (b) in WP, values increased with increasing pressed weight. 9. The rheology test results of Tofu were as follows: (a) in WPC, hardness and brittleness was highest with $CaCl_2$:GDL=8:2 and 6% added WPC. Cohesiveness was highest with $CaCl_2$:GDL=6:4 and 2% added WPC. Elasticity was the highest with $CaCl_2$:GDL=7:3 and the added WPC control. (b) in WP, hardness was the highest with $22.2g/cm^2$ and added WP control. Cohesiveness was the highest with $17.8g/cm^2$ and added WP 2%. Elasticity was the highest with $17.8g/cm^2$ and added WP 4%. Brittleness was the highest with $17.8g/cm^2$ and added WP control. 10. The sensory test results of Tofu were as follows: (a) in WPC, the texture, flavor, color, and smell were the highest with $CaCl_2$:GDL=6:4 and 6% added WPC. (b) in WP, the texture was the highest in the control with $22.2g/cm^2$. Flavor and smell were the highest in WP 2% and $22.2g/cm^2$. Color was the highest in WP 2% and $17.8g/cm^2$. 11. The quality change of Tofu during storage was as follows: (a) in WPC, after 60 h, all samples began to get spoiled and their color changed, and mold began to germinate. (b) in WP, the result was similar, but the rate of spoilage was more rapid than that in the control.

  • PDF

A Study on the Preservation of Citrus Mandarin by Irradiation (방사선조사(放射線照射)에 의(依)한 감귤(柑橘) 저장(貯藏)에 관(關)한 연구(硏究))

  • Chung, Chang Cho;Kim, Jai Ha;Kim, Soo Hyun;Cho, Han Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.2
    • /
    • pp.116-121
    • /
    • 1983
  • A study was conducted to evaluate the effect of $^{60}CO-{\gamma}$ irradiation on the preservation on Satauma mandarin in Cheju Island. Four varieties (S. m. early, S. m. Komezawa, S. m. Hayashi and S. m. Aoshima) were irradiated using 10,000Ci, $^{60}CO-{\gamma}$ ray with dosages of 0, 50, 100 and 150Krad. During 92 days of storage the effects of irradiation on mandarin porperties were as follows: At the end of storage period the accumulated fruit rotting percentage were S. m. Komezawa($T_2$);74.32%, S. m. early($T_1$);69.67%, S. m. Aoshima($T_4$);64.33% and S. m. Hayashi ($T_3$);61.79%. The rottings steadily increased from the early stage of storage and rapid spoilage continued after 59 days of irradiation. A high corelation existed between fruit rotting and varieties ($T_3$;Y=0.78x-15.30, $T_4$;Y=0.79x-12.29, $T_1$;Y=0.93x-9.01 and $T_2$;Y=0.79x-13.49) High dosages(100 and 150 Krad)improved fruit preservation during the mid storage stage. However 76 days after high dose irradiation there was no significant difference a rotting between irradiated fruit and the control. Irradiation decreased acidity of fruit during storage (p<0.01). The mean acidities of examined varieties were $T_1$;1.01%, $T_3$;1.01%, $T_4$;0.84% and $T_2$;0.77%. A significant differences were observed in acidity between varieties and dosages(P<0.01) With one exception in all treatments. the increase in free and total sugar content was not statestically significant. The exception was the 50 Krad treatment where the total sugar content decreased. $T_1$ and $T_4$ showed slightly higher value of than Brix $T_2$ and $T_3$, and were significantly(P<0.01) decreased by higher dosage. The ascorbic acid content in all treatments decreased with length of storage and also decreased significantly with a higher dosage.

  • PDF