• Title/Summary/Keyword: splitting test and ring test

Search Result 4, Processing Time 0.017 seconds

An Experimental Study on the Bond Split Mechanism of High Strength Concrete (고강도 콘크리트의 부착할렬기구에 관한 실험적 연구)

  • 장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.129-136
    • /
    • 1999
  • For the prediction of concrete-steel bond ability in reinforced concrete, many countries establish specifications for the pullout test. But these methods hardly to consider many parameters such as strength, shape, diameter and location of steel, concrete restrict condition by loading plate, strength of concrete and cover depth etc, and it is difficult to solve concentration and disturbance of stress. The purpose of this study is to propose a New Ring Test method which can be rational quantity evaluations of bond splitting mechanism. For this purpose, pullout test was carried out to assess the effect of several variables on bond splitting properties between reinforcing bar and concrete. Key variables are concrete compressive strength, concrete cover, bar diameter and rib spacing. Failure mode was examined and maximum bond stress-slip relationships were presented to show the effect of above variables. As the result, it appropriately expressed general characteristics of bond splitting mechanism, and it proved capability for standard test method.

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

Shear Strength Evaluation on Multiple High-Shear Ring Anchors Using Shear Strength Model of a Single High-Shear Ring Anchor (단일 고전단 링앵커의 전단강도 모델을 이용한 다수 고전단 링앵커의 전단강도 평가)

  • Kim, Mun-Gil;Chun, Sung-Chul;Kim, Young-Ho;Sim, Hye-Jung;Bae, Min-Seo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.463-471
    • /
    • 2016
  • A shear strength model for the high-shear ring anchor consisting of a steel ring and a rod was developed based on the shear tests on single high-shear ring anchors. The shear strength was found to be proportional to $f_{ck}{^{0.75}}$ which is a similar characteristic to the strength of shear connectors used in composite structures. The effects of the compressive strength of concrete, edge distance, and embedment length of rod are included in the proposed model. Comparison with 22 tests shows that the average and the coefficient of variation of test-to-prediction ratios are 1.01 and 7.57%, respectively. Push tests on the specimens having four high-shear ring anchors at each face were conducted and the measured shear strengths were compared with the predictions by the proposed model. For the specimen with an edge distance of 100 mm, a splitting failure occurred and for the specimens with an edge distance of 150 mm, a failure mode mixed with splitting and bearing occurred, which were very similar to the failures of shear tests on single high-shear ring anchors. In case of a splitting failure, the overlap of failure surfaces could be prevented by providing the longitudinal spacing of 400 mm which is four times of the edge distance. In case of a bearing failure, the failure area is less than 150 mm from the center of the anchor and therefore the overlap of failure surfaces could be prevented by providing the longitudinal spacing of 200 mm. The average of the test-to-prediction ratios of Push tests is 98%, which means that the proposed mode can be applied to predict the shear strength of the multiple high-shear rings.

The effects of limestone powder and fly ash as an addition on fresh, elastic, inelastic and strength properties of self-compacting concrete

  • Hilmioglu, Hayati;Sengul, Cengiz;Ozkul, M. Hulusi
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • In this study, limestone powder (LS) and fly ash (FA) were used as powder materials in self-compacting concrete (SCC) in increasing quantities in addition to cement, so that the two powders commonly used in the production of SCC could be compared in the same study. Considering the reduction of the maximum aggregate size in SCC, 10 mm or 16 mm was selected as the coarse aggregate size. The properties of fresh concrete were determined by slump flow (including T500 time), V-funnel and J-ring experiments. The experimental results showed that as the amount of both LS and FA increased, the slump flow also increased. The increase in powder material had a negative effect on V-funnel flow times, causing it to increase; however, the increase in FA concretes was smaller compared to LS ones. The increase in the powder content reduced the amount of blockage in the J-ring test for both aggregate sizes. As the hardened concrete properties, the compressive and splitting strengths as well as the modulus of elasticity were determined. Longitudinal and transverse deformations were measured by attaching a special frame to the cylindrical specimens and the values of Poisson's ratio, initiation and critical stresses were obtained. Despite having a similar W/C ratio, all SCC exhibited higher compressive strength than NVC. Compressive strength increased with increasing powder content for both LS and FA; however, the increase of the FA was higher than the LS due to the pozzolanic effect. SCC with a coarse aggregate size of 16 mm showed higher strength than 10 mm for both powders. Similarly, the modulus of elasticity increased with the amount of powder material. Inelastic properties, which are rarely found in the literature for SCC, were determined by measuring the initial and critical stresses. Crack formation in SCC begins under lower stresses (corresponding to lower initial stresses) than in normal concretes, while critical stresses indicate a more brittle behavior by taking higher values.