• Title/Summary/Keyword: splitting test

Search Result 301, Processing Time 0.027 seconds

Floor Panel manufacturing using Capital bamboo(Phyllostachys bambusoides) grown in Damyang Region -Part 1. Flattening of bamboo stem and floor making technology- (담양산 왕대나무를 이용한 평판 바닥재 제조기술 개발 -제1보. 대나무 원통의 평판화 및 마루판 제작 기술 표준화-)

  • Park, Choong-Nyeon;Chung, Woo-Yang
    • Journal of the Korea Furniture Society
    • /
    • v.20 no.5
    • /
    • pp.480-489
    • /
    • 2009
  • This study was carried out to develop the core technology for the manufacturing the flat floor panel with the bamboo grown in Damyang region maintaining its indigenous merits. Using capital bamboo(Phyllostachys bambusoides) of Damyang with superior physical and working properties, Authors have standardized the core technologies for the integrated production of flat floor panel using this superior bamboo i.e, washing, splitting, flattening, blasting, and overlaying over plywood. It is expected to increase the income from bamboo forest and to enhance the image of the eco-city, Damyang with this technological development. Additional quality assuring test and economical analysis for the industralization as building material will be performed.

  • PDF

Bench-scale Test of Sulfuric Acid Decomposition Process in SI Thermochemical Cycle at Ambient Pressure (SI 열화학싸이클 황산분해공정의 Bench-scale 상압 실험)

  • Jeon, Dong-Keun;Lee, Ki-Yong;Kim, Hong-Gon;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2011
  • The sulfur-iodine (SI) thermochemical water splitting cycle is one of promising hydrogen production methods from water using high-temperature heat generated from a high temperature gas-cooled nuclear reactor (HTGR). The SI cycle consists of three main units, such as Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition. The feasibility of continuous operation of a series of subunits for $H_2SO_4$ decomposition was investigated with a bench-scale facility working at ambient pressure. It showed stable and reproducible $H_2SO_4$ decomposition by steadily producing $SO_2$ and $O_2$ corresponding to a capacity of 1 mol/h $H_2$ for 24 hrs.

Effect of brittleness on the micromechanical damage and failure pattern of rock specimens

  • Imani, Mehrdad;Nejati, Hamid Reza;Goshtasbi, Kamran;Nazerigivi, Amin
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.535-547
    • /
    • 2022
  • Failure patterns of rock specimens represent valuable information about the mechanical properties and crack evolution mechanism of rock. Several kinds of research have been conducted regarding the failure mechanism of brittle material, however; the influence of brittleness on the failure mechanism of rock specimens has not been precisely considered. In the present study, experimental and numerical examinations have been made to evaluate the physical and mechanical phenomena associated with rock failure mechanisms through the uniaxial compression test. In the experimental part, Unconfined Compressive Strength (UCS) tests equipped with Acoustic Emission (AE) have been conducted on rock samples with three different brittleness. Then, the numerical models have been calibrated based on experimental test results for further investigation and comparing the micro-cracking process in experimental and numerical models. It can be perceived that the failure mode of specimens with high brittleness is tensile axial splitting, based on the experimental evidence of rock specimens with different brittleness. Also, the crack growth mechanism of the rock specimens with various brittleness using discrete element modeling in the numerical part suggested that the specimens with more brittleness contain more tensile fracture during the loading sequences.

Binary Tree Vector Quantization Using Spatial Masking Effect (공간 마스킹 효과를 적용한 이진트리 벡터양자화)

  • 유성필;곽내정;윤태승;안재형
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.369-372
    • /
    • 2003
  • In this paper, we propose impr oved binary tree vector quantization based on spatial sensitivity which is one of the human visual properties. We combine the weights based on spatial masking effect according to changes of three primary colors in blocks of images with the process of splitting nodes using eigenvector in binary tree vector quantization. The test results show that the proposed method generates the quantized images with fine color and performs better than the conventional method in terms of clustering the similar regions. Also the proposed method can get the better result in subjective qualify test and PSNR.

  • PDF

Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus

  • Komurlu, Eren;Kesimal, Ayhan;Demir, Serhat
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.775-791
    • /
    • 2016
  • The indirect tensile strengths (ITSs) of different cemented paste backfill mixes with different curing times were determined by considering crack initiation and fracture toughness concepts under different loading conditions of steel loading arcs with various contact angles, flat platens and the standard Brazilian test jaw. Because contact area of the ITS test discs developes rapidly and varies in accordance with the deformability, ITSs of curing materials were not found convenient to determine under the loading apparatus with indefinite contact angle. ITS values increasing with an increase in contact angle can be measured to be excessively high because of the high contact angles resulted from the deformable characteristics of the soft paste backfill materials. As a result of the change of deformation characteristics with the change of curing time, discs have different contact conditions causing an important disadvantage to reflect the strength change due to the curing reactions. In addition to the experimental study, finite element analyses were performed on several types of disc models under various loading conditions. As a result, a comparison between all loading conditions was made to determine the best ITSs of the cemented paste backfill materials. Both experimental and numerical analyses concluded that loading arcs with definite contact angles gives better results than those obtained with the other loading apparatus without a definite contact angle. Loading arcs with the contact angle of $15^{\circ}$ was found the most convenient loading apparatus for the typical cemented paste backfill materials, although it should be used carefully considering the failure cracks for a valid test.

Compression and Tensile Characteristics of Lightweight Air-Trapped Soil (경량기포토의 압축 및 인장 특성)

  • Lee, Young-Jun;Hwang, Woong-Ki;Yoon, Sung-Kyu;Kim, Jong-Sung;Choi, Dae-Kyung;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.631-642
    • /
    • 2010
  • This study is experimentally investigated for the characteristics of compression and tensile of lightweight air-trapped soils with uniform quality. Previously, EPS blocks are often used as lightweight embankment, but many problems such as the level difference and cracks caused by plastic(creep) deformation occurred in the EPS blocks. So, a new material development is urgent. By means of alternatives, lightweight air-mixed soil using in-situ soils has been developed and applied to fields. In comparison with EPS block, lightweight air-mixed soil have less creep deformation in long-time, but the strength characteristics of them are different depending on soils where they are obtained. Therefore, the quality management of them is very difficult. In this study, therefore, characteristics of lightweight air-trapped soil samples are investigated. To do this, the lightweight air-trapped soils are prepared using a manufactured sand with uniform quality. To found out the compression and tensile characteristics of lightweight air-tapped soils, unconfined compression test and splitting tensile test are conducted on the specimens prepared with different unit weight, cement-sand ratio and air-pore.

  • PDF

Equation of the Development Length for the Pullout tests with GFRP Reinforcement having Splitting Failure (쪼갬파괴가 발생된 GFRP 보강근을 사용한 이음길이 산정식)

  • Ha, Sang-Su;Choi, Dong-Uk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.859-862
    • /
    • 2008
  • The objective of this study offer the equation of the development length for GFRP reinforcement. Pullout test carried out to propose the development length for GFRP reinforcement. Test variables included embedment length (L=15, 30 and 45d$_b$ ), pure cover thickness(C=0.5, 1.0, 1.5, and 2.0d$_b$ ), diameter of reforcement(D10, D13 and D16), and three types, (domestic : K2KR, K3KR, foreign : AsUS) of GFRP reinforcement. The method of test were introduced pure pullout and tests lasted until the GFRP reinforcements were reached final failure. Based on the results through the pullout test, the bond characteristics and average bond stress for GFRP reinforcement were investigated. The equation of development length was proposed based on the regression analysis selected specimens having splitting failure. The equation gained from this study compared with the design equation provided by ACI committee 440.1R-06. The results through this study are capable of the flexural member design with GFRP reinforcement having lab spliced.

  • PDF

Size Effect of Concrete Structures without Initial Cracks (초기균열이 없는 콘크리트 구조물의 크기에 따른 응력감소효과에 관한 연구)

  • Kim, Jin Keun;Park, Hong Kyee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.29-36
    • /
    • 1987
  • In most of the structural members with initial cracks, the strength tends to decrease as the member size increases. This phenomenon is known as size effect. Among the structural materials of glass, metal or concrete, etc., concrete represents the size effect even without initial crack. According to the previous size effect law, the concrete member of very large size can resist little stress. Actually, however, even the large size member can resist some stress if there is no initial notch. This means that the fracture mechanism of very small or very large size member follows strength criterion, but the medium size member follows non-linear fracture mechanics (NLFM). In this study, the empirical models which are derived based on nonlinear fracture mechanics are proposed according to the regression analysis with the existing test data of large size specimens for uni-axial compression test, splitting tensile test and shear test of reinforced concrete beams.

  • PDF

Compression and Tensile Characteristics of Lightweight Air-Trapped Soil (경량기포토의 압축 및 인장 특성)

  • Lee, Young-Jun;Kim, Sung-Won;Park, Lee-Keun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.59-69
    • /
    • 2010
  • This study is experimentally investigated for characteristics of lightweight air-trapped soils with uniform quality. Previously, EPS (Expanded PolyStyrene) blocks are often used as lightweight embankment, but many problems such as the level difference and cracks were caused by plastic (creep) deformation. So, a new material development is urgent. By means of alternatives, lightweight air-mixed soil using in-situ soils has been developed and applied to fields. In comparison with EPS block, lightweight air-mixed soil has less plastic (creep) deformation in long period, but the strength characteristics are different according to the soils where they are obtained. Therefore, the quality management of lightweight air-mixed soil is very difficult. Therefore in this study, characteristics of lightweight air-trapped soil using a manufactured sand with uniform quality are investigated. To found out the compression and tensile characteristics of lightweight air-tapped soils, unconfined compression test and splitting tensile test are conducted on the specimens prepared with different unit weight, cement-sand ratio and air-pore.

An Experimental Research on the Material Properties of Super Flowing Concrete (초유동 콘크리트의 재료특성에 관한 실험적 연구)

  • 김진근;한상훈;박연동;노재호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.56-62
    • /
    • 1995
  • In this study, the properties of super flowing cocrete containing gly ash were experimentally investigated and compared with those of ordinary concrete. Tests were carried out on five types of super flowing concrete mixes containing fly ash and three types of ordinary concrete mixes without fly ash. Flow test, O-funnel test, box test, Ltype thest and slump test were carried out to obtain the properties for the workability of fresh concrete. Compressime strength, splitting tensile strength, modulus of elasticity. creep and shrinkage test were also obtained as the mechanical properties of hardened concrete. In fresh concrete, it was found that super flowing concrete had excellent workability and flowability compared with ordinary concrete, and the volume ratio of coarse aggregate to concrete volume greatly influenced flowability. Super flowing concrete also had good mechanical properties at both early and late ages with compressive strengths reaching as high as 40 MPa at 28 days. The creep deformation of super flowing concrete investigated were relatively lower than that of ordinary concrete.

  • PDF