• 제목/요약/키워드: spliced beams

검색결과 17건 처리시간 0.023초

Behaviour of fiber reinforced concrete beams with spliced tension steel reinforcement

  • Safan, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.623-636
    • /
    • 2012
  • The aim of the current work is to describe the flexural behaviour of simply supported concrete beams with tension reinforcement spliced at mid-span. The parameters included in the study were the type of the concrete, the splice length and the configuration of the hooked splice. Fifteen beams were cast using an ordinary concrete mix and two fiber reinforced concrete mixes incorporating steel and polypropylene fibers. Each concrete mix was used to cast five beams with continuous, spliced and hooked spliced tension steel bars. A test beam was reinforced on the tension side with two 12 mm bars and the splice length was 20 and 40 times the bar diameter. The hooked bars were spliced along 20 times the bar diameter and provided with 45-degree and 90-degree hooks. The test results in terms of cracking and ultimate loads, cracking patterns, ductility, and failure modes are reported. The results demonstrated the consequences due to short splices and the improvement in the structural behaviour due to the use of hooks and the confinement provided by the steel and polypropylene fibers.

Behavior of tension lap spliced sustainable concrete flexural members

  • Al-Azzawi, Adel A.;Daud, Raid A.;Daud, Sultan A.
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.83-92
    • /
    • 2020
  • The use of spliced reinforcing bars in sustainable concrete members to manage inadequate bars length is a common practical issue which is may be due to some limitations. The lap splicing means two bars overlapped in parallel with specified length called the splice length in order to provide the required bond between the two bars. The bond between sustainable concrete and spliced steel bars is another important issue. The normal strength sustainable concrete specimens of sizes 1700×150×150 mm with tension reinforcement lap spliced were selected according to testing device length limitations. These members were designed to fail in flexure in order to investigate the lap spliced tension bars effect. The selected lap spliced tension bars were of 10 mm size with smooth and deformed surfaces in order to investigate the surface nature accompanied with the splice nature. The sustainable concrete mechanical properties and mix workability were also studied. This study reveals that the effect of number of spliced bars on the response of beams reinforced with smooth bars is found to be more obvious than deformed one. Finite element modeling in three dimensions was carried out for the tested beams using ABAQUS software. A parametric study is carried out using finite elements on considering the following parameters, concrete compressive strength, load type and opening in cross section (hollow section) for weight reduction purposes.The laboratory and numerical results show good agreements in terms of ultimate load and deflection with an average difference of 10% and 15% in ultimate load and deflection respectively.

Bond strength prediction of spliced GFRP bars in concrete beams using soft computing methods

  • Shahri, Saeed Farahi;Mousavi, Seyed Roohollah
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.305-317
    • /
    • 2021
  • The bond between the concrete and bar is a main factor affecting the performance of the reinforced concrete (RC) members, and since the steel corrosion reduces the bond strength, studying the bond behavior of concrete and GFRP bars is quite necessary. In this research, a database including 112 concrete beam test specimens reinforced with spliced GFRP bars in the splitting failure mode has been collected and used to estimate the concrete-GFRP bar bond strength. This paper aims to accurately estimate the bond strength of spliced GFRP bars in concrete beams by applying three soft computing models including multivariate adaptive regression spline (MARS), Kriging, and M5 model tree. Since the selection of regularization parameters greatly affects the fitting of MARS, Kriging, and M5 models, the regularization parameters have been so optimized as to maximize the training data convergence coefficient. Three hybrid model coupling soft computing methods and genetic algorithm is proposed to automatically perform the trial and error process for finding appropriate modeling regularization parameters. Results have shown that proposed models have significantly increased the prediction accuracy compared to previous models. The proposed MARS, Kriging, and M5 models have improved the convergence coefficient by about 65, 63 and 49%, respectively, compared to the best previous model.

Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top

  • Zhou, Chaoyang;Ren, Da;Cheng, Xiaonian
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.135-143
    • /
    • 2017
  • To upgrade shear performance of reinforced concrete (RC) beams, and particularly of the segments under negative moment within continuous T-section beams, a series of original schemes has been proposed using carbon fibre-reinforced polymer (CFRP) U-shaped strips for shear-strengthening. The current work focuses on one of them, in which CFRP U-strips are wound around steel bars against the top of the flange of a T-beam and then spliced on its bottom face in addition to being bonded onto its sides. The test results showed that the proposed scheme successfully provided reliable anchorage for U-strips and prevented premature onset of shear failure due to FRP debonding. The governing shear mode of failure changed from peeling of CFRP to its fracture or crushing of concrete. The strengthened specimens displayed an average increase of about 60% in shear capacity over the unstrengthened control one. The specimen with a relatively high ratio and uniform distribution of CFRP reinforcement had a maximum increase of nearly 75% in strength as well as significantly improved ductility. The formulas by various codes or guidelines exhibited different accuracy in estimating FRP contribution to shear resistance of the segments that are subjected to negative moment and strengthened with well-anchored FRP U-strips within continuous T-beams. Further investigation is necessary to find a suitable approach to predicting load-carrying capacity of continuous beams shear strengthened in this way.

Influence of loading condition and reinforcement size on the concrete/reinforcement bond strength

  • Turk, Kazim;Caliskan, Sinan;Sukru Yildirim, M.
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.337-346
    • /
    • 2005
  • The paper reports on a study of bond strength between reduced-water-content concrete and tensile reinforcement in spliced mode. Three different diameters (12, 16 and 22 mm) of tensile steel were spliced in the constant moment zone, where there were two bars of same size in tension. For each diameter of reinforcement, a total of nine beams ($1900{\times}270{\times}180mm$) were tested, of which three beams were with no axial force (positive bending) and the other six beams were with axial force (combined bending). The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. It was found that there was a considerable size effect in the experimental results, i.e., as the diameter of the reinforcement reduced the bond strength and the deflection recorded at the midspan increased significantly, whilst the stiffness of the beams reduced. It was also found for all reinforcement sizes that higher bond strength and stiffness were obtained for beams tested in combined bending than that of the beams tested in positive bending only.

겹이음된 FRP 보강근으로 보강된 콘크리트 보의 휨거동 (Flexural Behavior of Concrete Beams Reinforced with Lap Spliced FRP Bar)

  • 오홍섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권1호통권53호
    • /
    • pp.186-194
    • /
    • 2009
  • 본 연구는 저자가 수행하고 있는 FRP로 보강된 콘크리트 보의 거동연구에 관한 일련의 연구 중 일부로서 본 연구에서는 인장보강근이 겹이음된 콘크리트보의 휨거동에 대한 실험적 연구결과를 제시하였다. 실험변수로는 보강근의 직경과 보강근의 겹이음길이를 적용되었으며, 총 14개의 겹이음된 실험체와 4개의 겹이음되지 않은 기준실험체에 대한 휨실험을 실시하여 각 실험변수인 보강근의 직경(10, 13, 16, 19mm)과 겹이음길이(0.72부터 1.58ld)에 대한 실험결과를 정리하였다. 각 보강근의 겹이음길이는 ACI 440에서 제시하고 있는 FRP 보강근에 대한 기준을 적용하였으며, 실험결과에서 사용된 FRP 보강근의 경우, 기준에서 제시하고 있는 부착길이에 대한 1.3과 1.6의 계수가 충분한 것으로 나타났다.

Effect of waste aluminium shavings on the bond characteristics of laterized concrete

  • Ofuyatan, Olatokunbo M.;Ivoke, Anthony A.;Olowofoyeku, Adeoye M.;Adesina, Adeyemi;Oluwafemi, John
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.25-36
    • /
    • 2019
  • The utilization of fibre in concrete production not only solves the problem of disposing this solid waste but helps conserve natural resources. This study investigated the effect of waste aluminum shavings on bond strength of laterized concrete. Laterized concrete spliced beams of $150{\times}250{\times}2150mm$ and $175{\times}275{\times}2300mm$ were prepared. Fifteen specimens with 16 mm and 20 mm were cast with the addition of aluminium shavings at varying percentages of 1vol%, 1.5vol% and 2vol%; another ten specimens with 16 mm and 20 mm diameter bars at 0% of aluminium shavings were cast as control. Concrete cubes of number were prepared, three taken for each set of various percentages of aluminium shavings were used to determine the concrete strength. It was observed from the analysis that the compressive strength decreased as the percentage of aluminium shavings increased, while the aluminium shavings increased the bond between concrete and steel. However, for normal concrete there was an increase in bond resistance with increase in aluminium shavings. The bond resistance of 16 mm was found to be higher than that of 20 mm in all the specimens tested.

GFRP 보강근으로 겹이음된 콘크리트 보의 보강비에 따른 거동특성 (Behavior of Reinforcement Ratio on Concrete Beams Reinforced with Lab Spliced GFRP Bar)

  • 최윤철;박금성;최현기;최창식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.67-76
    • /
    • 2011
  • 기존의 철근 콘크리트 구조물에서 나타나는, 극한 환경하에서의 철근의 부식 문제 때문에 GFRP 보강근으로 철근을 대체하고 있다. 최근 들어 GFRP를 보강근으로 사용한 보의 성능에 대한 해석적, 실험적 연구가 지속적으로 행해지고 있지만 아직 철근 콘크리트 보의 연구에 대한 수에 비하여 이에 대한 연구 결과는 매우 적어 신뢰성을 얻기 힘든 상황이다. 이에 본 연구에서는 겹침이음된 GFRP 보강근을 보에 적용하여 모멘트-처짐 관계에 대한 실험적 연구를 수행하였다. 실험 변수는 GFRP의 보강비와 피복 두께에 대한 것으로 총 6개의 GFRP 보강 콘크리트 보의 실험체가 제작되었다. 모든 실험체는 4000mm의 스팬을 가지고 있으며 12.7mm의 지름을 가지는 GFRP 보강근을 사용하였다. 보강근이 겹침이음된 부분에 일정한 모멘트가 작용하게 하기 위해 2점 가력 방식을 사용하였다. 실험 결과 보강근비의 증가에 따라 극한 하중의 크기가 증가하였다. 파괴 모드는 보강근비에 따라 매우 민감하게 변화하였으며 피복 두께는 인장측의 콘크리트의 탈락에 의해 최대 강도와 처짐량을 결정하는 요인이 되는 것으로 나타났다.

RC 부재 휨 실험에 의한 GFRP 보강근의 이음길이 제안 (Splice Length of GFRP Rebars Based on Flexural Tests of Unconfined RC Members)

  • 최동욱;천성철;하상수
    • 콘크리트학회논문집
    • /
    • 제21권1호
    • /
    • pp.65-74
    • /
    • 2009
  • 이형철근의 부식이 우려되는 경우, GFRP 보강근의 사용이 사용될 수 있다. 이 연구에서는 GFRP 보강근으로 보강된 총 36개 보 및 일방향 슬래브의 휨 실험을 수행하였다. 4종의 GFRP 보강근을 실험에 사용하였고, 보강근 직경은 13 mm이었다. 대부분의 실험체의 보강근은 중앙부에서 겹침이음되었다. 모든 보 및 슬래브는 4점재하 되었으므로, 이음부는 균일한 모멘트를 받도록 계획하였다. 실험변수는 이음길이, 피복두께 및 보강근 간격이었다. 보수적으로 부착강도를 평가하기 위하여 이음부에는 스터럽을 사용하지 않았다. 실험결과 보강근과 콘크리트 간 발생한 부착응력을 비선형 단면해석을 통하여 결정하였다. 2변수 선형 회귀분석을 사용하여 평균부착강도의 예측식을 유도하였다. 5% 분위수 개념을 사용하여 이음길이 설계식을 제안하였다. 이 연구의 결과로 이론적인 이음길이 설계식이 제안되었으며 결과를 ACI 440 정착설계식과 비교하였다.

Bond strength of reinforcement in splices in beams

  • Turk, Kazim;Yildirim, M. Sukru
    • Structural Engineering and Mechanics
    • /
    • 제16권4호
    • /
    • pp.469-478
    • /
    • 2003
  • The primary aim of this study was to investigate the bond strength between reinforcement and concrete. Large sized nine beams, which were produced from concrete with approximately ${f_c}^{\prime}=30$ MPa, were tested. Each beam was designed to include two bars in tension, spliced at the center of the span. The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. In all experiments, the variable used was the reinforcing bar diameter. In the experiments, beam specimens were loaded in positive bending with the splice in a constant moment region. In consequence, as the bar diameter increased, bond strength and ductility reduced but, however, the stiffnesses of the beams (resistance to deflection) increased. Morever, a empirical equation was obtained to calculate the bond strength of reinforcement and this equation was compared with Orangun et al. (1977) and Esfahani and Rangan (1998). There was a good agreement between the values computed from the predictive equation and those computed from equations of Orangun et al. (1977) and Esfahani and Rangan (1998).