• 제목/요약/키워드: spiral test

검색결과 193건 처리시간 0.023초

중공형 암석시편의 Pin-on-disk 마모시험을 위한 등속도 나선경로 계산방법 (Calculation Method of Constant Linear Velocity Spiral Path for Pin-on-disk Abrasion Test using a Hollow Type Rock Sample)

  • 강훈;김대지;송창헌;오주영;조정우
    • 터널과지하공간
    • /
    • 제30권4호
    • /
    • pp.394-403
    • /
    • 2020
  • 본 기술보고는 Pin-on-disk 마모시험에서 연속적인 등속도 아르키메데스 나선 경로 계산 방법에 관해 설명한다. 근사 계산된 등속도 아르키메데스 나선은 회전 중심 가까이에서 속도가 불안정하다. 따라서 본 기술보고에서는 등속도 조건을 만족시키기 위해 중공 단면을 가지는 시편을 사용하여 원점 부근에서 오프셋을 주었다. 또한, 내향형 나선과 외향형 나선을 연속적으로 연결하기 위해서 각각의 나선의 시작과 종료 지점 정보를 다음 차례의 나선에 반영하였다. 더불어, 시편의 치수과 마모시험 조건의 변화에 따라 등속도 나선 경로를 편리하게 계산하는 데 도움을 주고자 전용 계산 프로그램을 개발하였다.

체간의 나선방향운동이 운동능력에 미치는 효과 (The Effect Spiral Way Movement of a Trunk Exerts on the Movement Ability)

  • 이인학;남택길
    • 대한임상전기생리학회지
    • /
    • 제5권2호
    • /
    • pp.35-45
    • /
    • 2007
  • The purpose of this study was to examine spiral way movement of a trunk exerts on the movement ability. The details established to achieve for this article. This examination confirmed the weight, weight/height2 index, ratio of lumbar to pelvic, musculoskeletal quantity, push up for 2 minute, pitch a ball and voluntary isometric contraction with flexion and extension of knee joint of the subjects with spiral direct movement. Healthy eighteen subjects who understand fully the significance of procedure, consented to a plan, without neuromuscular disease were participated in two groups of experiment. The group were a spiral movement(9), rectilinear movement(9). Trunk movement tested 2 sessions of a spiral movement and rectilinear movement with a push up for 2 minute, 5days per a week, for the 4 weeks. This experiment tested 3 times with a sufficient rest for fatigue limitation. An analysis of the results used a paired samples t-test for difference from before and after experiment. The following results were obtained; At an internal change of the body, the musculoskeletal quantity was increased significantly to spiral movement group, but the weight was increased significantly, the musculoskeletal quantity was not significant to rectilinear movement. The movement ability evaluation for a external change was increased significantly in a push up for 2 minute, pitch a ball, isometric contraction with extension of knee joint of a spiral movement group, but a push up for 2 minute was increased significantly in a push up for 2 minute on the abdominal muscle training of a rectilinear movement group. As compared with a rectilinear movement, a spiral movement was more effect by cooperation with nerve and musculoskeletal system and an increase in movement ability was caused by learning acknowledgment, muscular reeducation. These results lead us to the conclusion that a spiral movement of trunk was more effect than a rectilinear movement, the coordination of nerve and musculoskeletal system was of importance of Multi-direction movement. Therefore, A further studies concerning the therapeutic exercise intervention and active-dynamic analysis could enhance the development of the most effect on the trunk.

  • PDF

Thermal Performance of a Spirally Coiled Finned Tube Heat Exchanger Under Wet-Surface Conditions

  • Wongwises Somchai;Naphon Paisarn
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.212-226
    • /
    • 2006
  • This paper is a continuation of the authors' previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data.

Vacuum Rotary Arc Gap Switch의 설계 및 시험 (Design and Test of Vacuum Rotary Arc Gap Switch)

  • 서길수;황동원;이태호;황리호;김희진;이홍식;임근희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권1호
    • /
    • pp.19-24
    • /
    • 2003
  • Design and test results of a VRAG(Vacuum Rotary Arc Gap) switch were presented. To control the damage of electrodes caused by the vacuum arc, Lorentz's force by the radial magnetic field between spiral electrodes was used to rotate the vacuum uc. VRAG switch electrodes were made of the material of CuCr and OFHC. Gap distance between two spiral type electrodes for the rotation of the arc discharge is 8, 10, 12mm. In the cathode, one trigger electrode was inserted into each spiral wing. Normal operation of the VRAG switch was confirmed with 10.6[$mutextrm{s}$]of trigger delay and 2~3[$mutextrm{s}$] of the jitter time. The speed of the vacuum arc was measured to be 0.6 ~ 1[km/s] by a motion analyzer.

나선철근교각의 내진성능에 관한 연구 (A Study on Seismic Performance of Spiral Prer)

  • 배성용;김광수;이형준;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.363-368
    • /
    • 2000
  • The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. However, The current seismic design requirements for bridges are based on the USA seismic codes for sever earthquake. This provides the basic factors that affects the performance of spiral reinforced concrete piers for seismic loading, and The specimen tests are performed based on load-displacement, effective stiffness and displacement ductility, etc. The quasi-static test was adopted in order to investigate seismic performance of the spiral reinforced concrete pier specimens which had different transverse steel amount, spacing and longitudinal steel ratio under different axial load levels. This study is concluded that seismic design for transverse reinforcement content of spiral reinforced concrete column has influenced on axial load and effective stiffness etc.

  • PDF

Flap rudder를 이용한 조종성능 평가 (Evaluation of the maneuverability of a real ship with flap rudder)

  • 안장영;김광일;김민선;이창헌
    • 수산해양기술연구
    • /
    • 제56권2호
    • /
    • pp.172-182
    • /
    • 2020
  • In order to offer specific information needed to assist in operation of a ship with same type rudder through evaluating the maneuverability of training ship A-Ra with flapped rudder, sea trials based full scale for turning test, zig-zag test with rudder angle 10° and 20°, and spiral test at service condition were carried out on starboard and port sides around Jeju Island according to the standards of maneuverability of IMO. As a result, the angular velocity of port turn was higher than that of starboard turn. Therefore, the size of turning circle was longer on the starboard side. In addition, variation of the transfer due to various factors was more stable than those of the others. In the Z-test results, the mean of 1st and 2nd overshoot angles were 9.8°, 6.3° and 15.3°, 9.2° respectively when the port and starboard was 10°; the 1st overshoot angle were 18°, 13.7° when using 20°. Her maneuverability index T' and K' can be easily determined by using a computer with the data obtained from Z-test where K' and T' are dimensionless constants representing turning ability and responsiveness to the helm, respectively. In the Z-test under flap rudder angle 10°, the obtained K' value covered the range of 2.37-2.87 and T' was 1.74-3.45. Under the flap rudder angle 20°, K' and T' value showed 1.43-1.63, 1.0-1.73, respectively. In the spiral test, the loop width was unstable at +0.3° and -0.5°-0.9° around the midship of flap rudder. As a result, course stability was comparatively good. From the sea trial results, training ship ARA met the present criterion in the standards of maneuverability of IMO.

차량 RKE 리더기용 PIFA형 스파이럴 안테나의 설계 (Design of PIFA type Spiral Antenna for Vehicle RKE Reader)

  • 오동준;윤호진;정봉식
    • 융합신호처리학회논문지
    • /
    • 제9권2호
    • /
    • pp.135-140
    • /
    • 2008
  • 본 논문에서는 자동차에 사용되는 RKE(Remote Keyless Entry) 시스템용인 중심주파수가 315MHz, 433MHz 및 447MHz이 스파이럴 안테나를 PCB(Printed Circuit Board)상에 설계하고자 한다. 안테나는 선로 급전하였으며, 급전부에는 중심주파수 조정과 임피던스 정합이 용이하도록 PIFA(Planar Inverted-F Antenna) 구조를 적용하였다. 안테나는 PCB상에 인쇄되며 PCB 면적의 5% 정도인 $30mm{\times}20mm$ 이내의 크기를 갖도록 설계하였고, PCB상의 회로소자 ECU (Electronic Control Unit) 케이스, ECU가 장착되는 차체의 영향을 고려하여 설계하였다. 또한 스파이럴 선로상에 칩 인덕터를 삽입하여 315MHz와 447MHz에서 이중공진을 일으키는 이중대역 스파이럴 안테나를 설계하였다. 최종 설계된 안테나는 측정을 통해 안테나 사양을 만족함을 확인하였고, 안테나를 ECU에 장착하여 실험한 결과, 전방향에서 20m이상의 수신거리를 가지면서 정상적으로 동작함을 확인하였다.

  • PDF

Behavior of concrete columns confined with both steel angles and spiral hoops under axial compression

  • Zhou, Chunheng;Chen, Zongping;Shi, Sheldon Q.;Cai, Liping
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.747-759
    • /
    • 2018
  • This study proposed a new type of concrete column that was confined with both steel angles and spiral hoops, named angle-steel and spiral confined concrete (ASCC) column. A total of 22 ASCC stub columns were tested under axial compression to investigate their behavior. For a comparison, three angle-steel reinforced concrete (ARC) stub columns were also tested. The test results indicated that ASCC column had a superior mechanical performance. The strength, ductility and energy absorption were considerably increased due to the improvement of confinement from spiral hoops. The confinement behavior and failure mechanism of ASCC column were investigated by the analysis of failure mode, load-deformation curve and section-strain distribution. Parametric studies were carried out to examine the influences of different parameters on the axial compression behavior of ASCC columns. A calculation approach was developed to predict the ultimate load carrying capacity of ASCC columns under axial compression. It was validated that the predicted results were in well agreement with the experimental results.

분리된 6.6kV급 고정자 권선의 부분방전 측정을 위한 Spiral 패치 안테나 센서 적용 연구 (Dismantled PD diagnosis on 6.6kV Stator Winding by Using Spiral Patch Antenna Sensor)

  • 키아우소 륀;신동훈;임광진;양훈;공태식;김희동;박노준;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.211-212
    • /
    • 2007
  • There have three kinds of partial discharge diagnosis testing: online, offline and dismantled testing on high voltage rotating machine. Our lab testing is dismantled testing, taking off pieces into individual parts of stator coil of high voltage rotating machine in laboratory. We investigate internal discharge, slot discharge, corona discharge and normal state on pre-made stator winding by using spiral patch antenna sensor. In this lab test we compare the experimental results of our spiral patch antenna sensor and reference commercial HFCT sensor.

  • PDF

Magnetic Actuator for a Capsule Endoscope Navigation System

  • Chiba, Atsushi;Sendoh, Masahiko;Ishiyama, Kazushi;Arai, Ken Ichi;Kawano, Hironao;Uchiyama, Akio;Takizawa, Hironobu
    • Journal of Magnetics
    • /
    • 제12권2호
    • /
    • pp.89-92
    • /
    • 2007
  • The authors propose a magnetic actuator for use as a navigation system for capsule endoscopes. The actuator is composed of a capsule dummy, a permanent magnet inside the capsule, and an external spiral structure. The device rotates and propels wirelessly when exposed to an external rotational magnetic field. In this study we measured the effect of the spiral shape on the velocity and thrust force properties. According to our experimental results, the actuator obtained a maximum velocity and thrust force when the spiral angle was set at 45 degrees, the number of spirals was set at 4, and the spiral-height was set at 1-mmf. We also conducted a motion test in the large intestine of a pig placed on a 30 degrees slope. The actuator passed through a 700 mm length of the intestine in about 300 s. The device also managed to travel up and down the 30 degrees slope with no difficulty whatsoever. Our results demonstrate the great potential of this actuator for use as a navigation system for capsule endoscopes.