• Title/Summary/Keyword: spiral test

Search Result 195, Processing Time 0.023 seconds

Support Characteristics of Rock Bolt and Spiral Bolt (록 볼트 및 스파이럴 볼트의 지보특성)

  • Cho, Young-Dong;Song, Myung-Kyu;Lee, Chung-Shin;Kang, Choo-Won;Ko, Jin-Seok;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.181-189
    • /
    • 2009
  • This study is to evaluate an effect of supports with respect to these supports after comparing the characteristic of support between rock bolt of a widely used type and spiral bolt of a new type. For these purposes, we performed pull-out test in laboratory about rock and spiral bolts in the case of cement-mortar grout curing periods, 7 and 28 days, then calculated pull-out load, displacement, external pressure, inner pressure and shear stress using data obtained from the results of pull-out test, respectively. In relation between pull-out load and displacement, displacement of spiral bolt is larger than one of rock bolt. It is considered that mechanical property of rock bolt is due to larger than one of spiral bolt. In addition, displacement of supports shows nearly same or decreasing with curing periods. We found that because adhesive force between supports and cement-mortar grout is increasing with compressive strength of grout according to curing periods. The inner pressure of spiral bolt is represented larger than one of rock bolt at a step of same pull-out load. It is suggested that spiral bolt is more stable than rock bolt, maintaining stability of ground or rock mass, when supports are installed in a ground or rock mass under the same condition. Putting together with above results, we can consider that spiral bolt as a new support on an aspect of pull-out load and inner pressure is larger than rock bolt in a ground or rock mass under the same condition. Moreover, spiral bolt is more effective support than rock bolt, considering an economical and constructive aspects of supports, as well as ground or rock stability before or after installing supports.

Effect of spiral reinforcement on flexural-shear-torsional seismic behavior of reinforced concrete circular bridge columns

  • Belarbi, Abdeldjelil;Prakash, Suriya;You, Young-Min
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.137-158
    • /
    • 2009
  • This paper investigates the behavior of reinforced concrete (RC) circular columns under combined loading including torsion. The main variables considered in this study are the ratio of torsional moment to bending moment (T/M) and the level of detailing for moderate and high seismicity (low and high transverse reinforcement/spiral ratio). This paper presents the results of tests on seven columns subjected to cyclic bending and shear, cyclic torsion, and various levels of combined cyclic bending, shear, and torsion. Columns under combined loading were tested at T/M ratios of 0.2 and 0.4. These columns were reinforced with two spiral reinforcement ratios of 0.73% and 1.32%. Similarly, the columns subjected to pure torsion were tested with two spiral reinforcement ratios of 0.73% and 1.32%. This study examined the significance of proper detailing, and spiral reinforcement ratio and its effect on the torsional resistance under combined loading. The test results demonstrate that both the flexural and torsional capacities are decreased due to the effect of combined loading. Furthermore, they show a significant change in the failure mode and deformation characteristics depending on the spiral reinforcement ratio. The increase in spiral reinforcement ratio also led to significant improvement in strength and ductility.

Drawing Process with Rotational Die for Forming Grooves in a Tube (돌기 튜브 성형을 위한 회전 금형 인발공정에 관한 연구)

  • Park, Joon-Hong;Byon, Sang-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.123-129
    • /
    • 2018
  • A rotational drawing die which can form a long tube with spiral grooves on the surface is presented. The main feature of the proposed die is a rotation insert that is embedded into the die container for the die to freely rotate with respect to the drawing centerline as the materials are drawn. We employed a three-dimensional finite element model to investigate the effects of the rotational die on the material filling of spiral grooves. The material used in the finite element analysis was stainless 304. We also performed a pilot drawing test to verify the usefulness of the proposed rotational drawing die. Results reveal that the material filling of spiral grooves by the proposed rotational drawing die was in good agreement for both the finite element analysis and the drawing test. We found that the underfill in a conventional drawing die was reduced in the proposed rotational drawing die.

Spiral Taping Improves Performance on Star Excursion Balance Test in Individuals with Unilateral Chronic Ankle Instability

  • Bae, Young-Sook
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.6
    • /
    • pp.376-380
    • /
    • 2016
  • Purpose: This study was to investigate the short-term effects of spiral taping (ST) on performance on the star excursion balance test (SEBT) in individuals with unilateral chronic ankle instability (CAI). Methods: This study was single-group pre - post measures experimental design. The subjects with CAI were 39 (range, 20-31 years; male 16, females 23) were enrolled in the study. The discomfort had in unilateral ankle and Cumberland ankle instability score was 19.56 (${\pm}3.29$). Spiral tape (a width of 3 mm) was applied $3{\times}4$ cross shape on medial malleolus, lateral malleolus and dorsal of talocural joint of unstable ankle. SEBT was measured baseline and 30 min later in stable ankle and unstable ankle. Results: SEBT showed significantly improved after applying the ST (p<0.05, ES=0.74) on unstable ankle. In comparison the difference of stable and unstable ankle, between the pretest and posttest were significant differences (p<0.01, ES=1.88). Conclusion: These results indicated that ST improves performance on the SEBT. Therefore, it suggests that ST may be a suitable intervention to dynamic balance in patients with CAI.

Effect of shape and amount of transverse reinforcement on lateral confinement of normal-strength concrete columns

  • Kim, Hyeong-Gook;Kim, Kil-Hee
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.79-92
    • /
    • 2022
  • The amount and configuration of transverse reinforcement are known as critical parameters that significantly affect the lateral confinement of concrete, the ductility capacity, and the plastic hinge length of RC columns. Based on test results, this study investigated the effect of the three variables on structural indexes such as neutral axis depth, lateral expansion of concrete, and ductility capacity. Five reinforced concrete column specimens were tested under cyclic flexure and shear while simultaneously subjected to a constant axial load. The columns were reinforced by two types of reinforcing steel: rectangular hoops and spiral type reinforcing bars. The variables in the test program were the shape, diameter, and yield strength of transverse reinforcement. The interactive influence of the amount of transverse reinforcement on the structural indexes was evaluated. Test results showed that when amounts of transverse reinforcement were similar, and yield strength of transverse reinforcement was 600 MPa or less, the neutral axis depth of a column with spiral type reinforcing bars was reduced by 28% compared with that of a column reinforced by existing rectangular hoops at peak strength. While the diagonal elements of spiral-type reinforcing bars significantly contributed to the lateral confinement of concrete, the strain of diagonal elements decreased with increases of their yield strength. It was confirmed that shapes of transverse reinforcement significantly affected the lateral confinement of concrete adjacent to plastic hinges. Transverse reinforcement with a yield strength exceeding 600 MPa, however, increased the neutral axis depth of normal-strength concrete columns at peak strength, resulting in reductions in ductility and energy dissipation capacity.

A Study on the Maneuverabilities of the T.S. Kaya (실습선 가야호의 조종성능에 관한 연구)

  • KIM, Min-Seok;SHIN, Hyeong-Il;KIM, Jong-Hwa;KANG, Il-Kwon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.1
    • /
    • pp.59-67
    • /
    • 2009
  • It is necessary for navigator to understand sufficiently maneuverabilities based on experiences and the data which were gotten from several tests of the ship when he maneuver his vessel. By the way most navigators used to rely on his experiences or feelings only maneuvering ship. But when he encounters situations he did not experience before he may be in difficulties. So navigator must get both experiences and data based on experimental results. In this paper author performs several tests such as turning test, Zig-zag test and spiral test to provide informations of maneuverabilities for navigators. The obtained results are as follows: There occurs almost no difference in size of the turning circle by the changes of ship's speeds. The scale of the turning circle was decreased exponentially when the rudder angle was increased. The maneuverabilities is better turning to starboard side than to port side. Maneuverabilities are more effective when the rudder is used to small angle than to large angle. As a result of spiral test course stability was comparatively seemed to be good.

Study of pile foundation using spiral pile (나선형 파일을 이용한 말뚝기초에 관한 연구)

  • Yoon, Young-Hwan;Kang, Si-On;Cho, Young-Dong;Kim, Sang-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.567-575
    • /
    • 2018
  • This study examined a pile foundation using a spiral pile. To maintain the structural safely, a foundation for connecting the ground and the ground structure is needed. On the other hand, noise and vibration, etc. cause problems when constructing a foundation on adjacent structures or urban areas. A study of the spiral foundation of a new shape with low vibration and noise was carried out to solve these problems. A study of pile foundations was carried out on a scaled model test and compared with the results of Meyerhof's bearing capacity theory. The scaled model test results showed that the bearing capacity increases with increasing pitch angle and length of the spiral pile. To verify the measured bearing capacity in a test with theoretical results, the bearing capacity of the actual spiral pile and scaled model pile were examined and compared. The ultimate bearing capacity of the spiral pile can be increased by increasing the foundation length and pitch angle. This study complements existing foundation construction problems and contributes to a better effect and safety.

Detection of Intrinsic Spin Alignments in Isolated Spiral Pairs

  • Koo, Hanwool;Lee, Jounghun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.79.3-79.3
    • /
    • 2019
  • Observational evidence for intrinsic galaxy alignments in isolated spiral pairs is presented. From the catalog of the galaxy groups identified by Tempel et al. in the flux-limited galaxy sample of the Sloan Digital Sky Survey Data Release 10, we select those groups consisting only of two spiral galaxies as isolated spiral pairs and investigate if and how strongly the spin axes of their two spiral members are aligned with each other. We detect a clear signal of intrinsic spin alignment in isolated spiral pairs, which leads to the rejection of the null hypothesis at the 99.9999% confidence level via the Rayleigh test. It is also found that those isolated pairs comprising two early-type spiral galaxies exhibit the strongest signal of intrinsic spin alignment and that the strength of the alignment signal depends on the angular separation distance as well as on the luminosity ratio of the member galaxies. Using the dark matter halos consisting of only two subhalos resolved in the EAGLE hydrodynamic simulations, we repeat the same analysis but fail to find any alignment tendency between the spin angular momentum vectors of the stellar components of the subhalos, which is in tension with the observational result. Several possible sources of this apparent inconsistency between the observational and the numerical results are discussed.

  • PDF

Detection of Intrinsic Spin Alignments in Isolated Spiral Pairs

  • Koo, Hanwool;Lee, Jounghun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.35.2-35.2
    • /
    • 2019
  • Observational evidence for intrinsic galaxy alignments in isolated spiral pairs is presented. From the catalog of the galaxy groups identified by Tempel et al. in the flux-limited galaxy sample of the Sloan Digital Sky Survey Data Release 10, we select those groups consisting only of two spiral galaxies as isolated spiral pairs and investigate if and how strongly the spin axes of their two spiral members are aligned with each other. We detect a clear signal of intrinsic spin alignment in isolated spiral pairs, which leads to the rejection of the null hypothesis at the 99.9999% confidence level via the Rayleigh test. It is also found that those isolated pairs comprising two early-type spiral galaxies exhibit the strongest signal of intrinsic spin alignment and that the strength of the alignment signal depends on the angular separation distance as well as on the luminosity ratio of the member galaxies. Using the dark matter halos consisting of only two subhalos resolved in the EAGLE hydrodynamic simulations, we repeat the same analysis but fail to find any alignment tendency between the spin angular momentum vectors of the stellar components of the subhalos, which is in tension with the observational result. Several possible sources of this apparent inconsistency between the observational and the numerical results are discussed.

  • PDF

Development of Continuous Rectangular Spiral Hoop Bar Construction for RC Beam and Column (연속후프를 이용한 철근콘크리트 보, 기둥 철근배근 공법 개발)

  • Park, Sung-Woo;Kwak, Chang-Sik;Jin, Jong-Min;Park, Hong-Geun;Kang, Su-Min;Kim, Hyo-rak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.171-172
    • /
    • 2012
  • In this study the continuous rectangular spiral hoop is used for saving cost and time, solving manpower shortage, and the quality of structures. Generally the use of continuous spiral reinforcement in reinforced concrete elements improve the strength and the ductility of the concrete. Savings in cost and time is demonstrated with the continuous rectangular spiral hoop through the mock up test of beam and column elements. In case of a 4m column element the time of rebar work decreases up to 40% compared with traditional hoop, and in case of a 8m beam the time also decreases 40%. This study present the construction method and details.

  • PDF