• Title/Summary/Keyword: spindle system

Search Result 606, Processing Time 0.025 seconds

Parameters Estimation and Torque Monitoring for the Induction Spindle Motor (주축용 유도전동기의 매개변수 추정과 토크 모니터링 시스템)

  • Kwon, Won-Tae;Kim, Gyu-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.238-244
    • /
    • 2004
  • To monitor the torque of an induction motor using current, the accurate identification of the motor parameters is very important. In this study, the motor parameters such as rotor resistance, stator and rotor leakage inductance, mutual inductance are estimated for torque monitoring and indirect vector control. Estimated parameters are used to monitor the torque of vector controlled induction motor without any speed measuring sensor. Stator current is measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. From the experiments, the proposed method shows a good estimation of the motor parameters and torque under the normal rotational speed.

Presumption for Mutual Relation of the End-Milling Condition on Surface Roughness of ST S304 by Regression Analysis (회귀분석을 이용한 STS304의 표면정도에 미치는 엔드밀 가공조건의 상관관계 추정)

  • Ryu, M.R.;Lee, S.J.;Bae, H.J.;Jin, D.K.;Jun, T.O.;Park, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1822-1827
    • /
    • 2003
  • End-milling have been used widely in industrial system because it is effective to a material manufacturing with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum surface roughness has an effect on end-milling condition such as, cutting direction, spindle speed, feed rate and depth of cut, etc. Therefore this study was carried out to presume for mutual relation of end-milling condition to get the optimum surface roughness by regression analysis. The results shown that coefficient of determination($R^{2}m$) of regression equation has a fine reliability over 80% and regression equation of surface rough is made by regression analysis.

  • PDF

Indirect Measurement of Auto Screw Drive's Torque Using Current Signals of DC Motor (DC 모터 전류 신호를 이용한 자동나사체결기 토크의 간접측정)

  • 이정윤;이정우;이준호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.88-93
    • /
    • 2004
  • The main objective of the research is to Propose an algorithm that to estimate the screwing torque from parameters of DC motor current without using any stain gage and torque cell. The auto screw drive system is divided into two parts, one is the DC motor ind the other is mechanical part in which the friction torque and damping ratio are a function of rotational of spindle electro motive force constant. The torque is estimated from the friction torque. The research is concerned with applying the method to an auto screw drive and the advantages and limitations are also discussed in this paper.

Characteristics Analysis of Thermal Deformation for Machine Tools with respect to Operating Conditions (작업조건에 따른 공작기계의 열변형 특성 해석)

  • 이재종;최대봉;박현구;곽성조;박홍석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.449-453
    • /
    • 2000
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

A study on the flow friction loss of a shrouded rotating disk (밀폐된 단일 회전 원판 주위의 유동손실에 관한 연구)

  • 조성욱;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.159-165
    • /
    • 2001
  • The fundamental fluid mechanics associated with the rotation of a smooth plane disk enclosed within a cylindrical chamber have been studied experimentally. In order to acquire systematic information pertinent to this problem torque and friction loss data were obtained over a wide range of disk Reynolds numbers for axial clearance-disk radius ratio H/R from 0.025 to 0.2 and radial tip gap-disk radius ratio s/R from 0.021 to 0.105. Loss analysis of hard disk drive(HDD) is presented to describe the contribution of windage loss of a rotating disk. The minimum loss from factor of HDD can be obtained from this analysis at each operation conditions.

  • PDF

칼만필터를 이용한 3점식 정도측정에 관한 연구

  • Lee, Yeong-Jin;Joun, Seung-Yun;Jung, Keum-Young;Kim, Jong-Hwa;Bae, Jong-Il;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.72-78
    • /
    • 2001
  • Roundness measurement method using three displacement sensors makes in-process roundness measurement possible on the NC machine because it eliminates the vibration signal and eccentricity signal from measured roundness signal from the workpiece. But there are noises in measured signals, it isn't possible to measure the roundness with high precision. In this study, a high precision in-process roundness measurement system is development, which can eliminate vibrations of the spindle by using three displacement sensors and which can also estimate the noisy roundness measurement signals by applying Kalman filter.

  • PDF

Efficiency Optimization Control of PMSM (PMSM 드라이브의 효율 최적화 제어)

  • Song, Jae-Joo;Lee, Jung-Chul;Han, Byung-Sung;Whang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.55-58
    • /
    • 2003
  • IPMSM (Interior Permanent Magnet Synchronous Motor) is widely used in many applications such as an electric vehicle, compressor drives of air conditioner and machine tool spindle drives. In order to maximize the efficiency in such applications, this paper is proposed the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM The proposed control algorithm is applied to IPMSM drive system, the operating characteristics controlled by efficiency optimization control are examined in detail by simulation.

  • PDF

Micro Patterning of Roll using Fast Tool Servo System (FTS시스템을 이용한 룰외 미세 패턴 가공)

  • Lu, Hong;Choi, Soo-Chang;Lee, Sang-Min;Park, Chun-Hong;Lee, Deug-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.22-26
    • /
    • 2011
  • The application of fast tool servo (FTS) for diamond turning has been investigated extensively. This paper focuses on the fabrication of the sinusoidal microstructure on a roller, which generated by a piezoelectric-assisted FTS. The influence of the machining parameters on the microstructure configuration was investigated. The experiment results point out that the configuration of the machined microstructure depends mainly on the spindle speed, the diameter of roller and the driving frequency of FTS. The calculation method of the microstructure dimension was reported. The turning test results show that the diamond tool can be moved up to 1kHz without any reinjected vibration in the machining and the peak-to-valley amplitude of the machined sinusoidal microstructure is about 12<${\mu}m$

Presumption for Mutual Relation of the End-Milling Condition on Surface Roughness of Al Alloy by Regression Analysis (회귀분석을 이용한 Al 합금의 표면거칠기에 미치는 엔드밀 가공조건의 상관관계 추정)

  • 이상재;배효준;박흥식;전태옥
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.46-52
    • /
    • 2003
  • End-milling have been used widely in industrial system because it is effective to a material manufacturing with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum surface roughness has an effect on end-milling condition such as, cutting direction spindle speed, feed rate and depth of cut, etc. Therefore this study was carried out to presume for mutual relation of end-milling condition to get the optimum surface roughness by regression analysis. The results shown that coefficient of determination($\textrm{R}^2$) of regression equation has a fine reliability of 87.5% and regression equation of surface rough is made by regression analysis.

A Study on the Design of the Automatic Cutting Mechanism of the Perforation Pipes in an Automobile Muffler (차량 소음기용 다공파이프 자동절단 메커니즘 설계에 관한 연구)

  • Kim, Yong-Seok;Jeong, Chan-Se;Yang, Soon-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.350-356
    • /
    • 2011
  • In this paper, we proposed the automatic cutting mechanism of the perforation pipes in an automobile muffler. This cutting mechanism makes continuous work possible, because it performs the batch work via the sequential operation of loading, feeding, cutting, and discharging. The proposed cutting mechanism consists of the frame unit, escape unit, turning unit, feeding unit, vision system, clamping unit, spindle/cutting unit and cooling unit. And, these mechanisms have been modularized through mechanical, dynamical and structural optimized design using the SMO (SimDesigner Motion) analysis module. Also, the virtual prototype was carried out using the 3-D CAD program. The cutting process cycle is performed in the order of loading, vision processing, feeding, clamping, cutting and discharging. And the cycle time for cutting one piece was designed to be completed in four seconds.