• 제목/요약/키워드: spindle Speed Control

검색결과 107건 처리시간 0.02초

롤러 기어 캠의 시제품 가공특성에 관한 연구 (A Study on the Machining Characteristics of Prototype of Roller Gear Cams)

  • 김진수;강성기;이동섭
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.60-67
    • /
    • 2012
  • In the study, the effect grinding condition on the workpiece arithmetical average roughness(Ra) to 10 steps leading to cutting each section with the spindle rotational speed 8000rpm and feed rate 150mm/min of grinding in GC(green silicon carbide) grinding processing after heat treatment and non heat treatment of SCM415 material. Also the following conclusions were obtained analysis of stress distribution displacement and finite elements method(FEM) on assemble parts with 3+2 axis simultaneous control through grinding and gave a load 11kg on ATC arm both sides gave a load of 11kg. For the centerline average roughness(Ra) in the heat and non-heat treatment work pieces, which were appeared the most favorable in the fifth section were $0.511{\mu}m$ and $0.514{\mu}m$, that were shown in the near the straight line section was the smallest deformation of curve. In addition, the bad surface roughness appeared on the path is too long by changing angle, the more inclined depth of cut, because the chip discharging is not smoothly.

항공기 주익 조립 장비의 드릴링 성능에 관한 연구 (A Study on the Drilling Performance of the Assembly Machine for the an Aircraft's Main Wings)

  • 홍성민;박대훈;한성길;송철기
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.8-15
    • /
    • 2018
  • Recently, the manufacturing market for low-cost airlines has led to an increase in aircraft demand. Most processes in the production of these aircrafts are manual such as drilling, sealing, and swaging. A drilling and riveting machine is a numerical-control based equipment that automatically performs drilling, sealing, and swaging operations. The accuracy of the drilled holes and the exit burr length has a significant impact on the quality of the aircraft wing during assembly. This study was conducted to identify the conditions necessary to maintain a uniform quality by controlling the rotation speed of the spindle, which directly affects the hole diameter and the quality of the exit burr.

페루프 외란 검출기를 통한 광디스크 외란 측정 (Disturbance estimation of optical disc by closed loop output estimator)

  • Park, Jin-Young;Chun, Chan-Ho;Jun, Hong-Gul;Lee, Moon-Noh;Hyunseok Yang;Park, Young-Pil
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1166-1171
    • /
    • 2001
  • The method for output disturbance estimation is proposed. In this method, output disturbance is estimated from the closed loop system dynamics using the output and control input signals. In the closed-loop output-disturbance estimator, precise system identification is required to reduce estimation error. The realization of estimator was done by the DSP board (DSPl103), and disturbance estimation in various environments was performed: change of rotation speed, media feature and spindle motor with (or without) auto-ball balancing system (ABS). From these experiments, the disturbance characteristics of ODD under various conditions are analyzed, and the desirable servo loop configuration based these results is proposed.

  • PDF

반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화 (Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms)

  • 오세현;샤오샤오;김영석
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process

Statistical Qualitative Analysis on Chemical Mechanical Polishing Process and Equipment Characterization

  • Hong, Sang-Jeen;Hwang, Jong-Ha;Seo, Dong-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권3호
    • /
    • pp.115-118
    • /
    • 2011
  • Process characterization of the chemical mechanical polishing (CMP) process for undensified phosphosilicate glass (PSG) film is reported using design of experiments (DOE). DOE has been addressed to experimenters to understand the relationship between input variables and responses of interest in a simple and efficient way. It is typically beneficial for determining the adequate size of experiments with multiple process variables and making statistical inferences for the responses of interests. Equipment controllable parameters to operate the machine include the down force (DF) of the wafer carrier, pressure on the backside of the wafer, table and spindle speed (SS), slurry flow rate, and pad condition. None of them is independent; thus, the interaction between parameters also needs to be indicated to improve process characterization in CMP. In this paper, we have selected the five controllable equipment parameters, such as DF, back pressure (BP), table speed (TS), SS, and slurry flow (SF), most process engineers recommend to characterize the CMP process with respect to material removal rate (RR) and film uniformity as a percentage. The polished material is undensified PSG. PSG is widely used for the plananization in multi-layered metal interconnects. We identify the main effect of DF, BP, and TS on both RR and film uniformity, as expected, by the statistical modeling and analysis on the metrology data acquired from a series of $2^{5-1}$ fractional factorial design with two center points. This revealed the film uniformity of the polished PSG film contains two and three-way interactions. Therefore, one can easily infer that the process control based on better understanding of the process is the key to success in semiconductor manufacturing, typically when the wafer size reaches 300 mm and is continuously scheduled to expand up to 450 mm in or little after 2012.

Statistical Qualitative Analysis on Chemical Mechanical Polishing Process and Equipment Characterization

  • Hong, Sang-Jeen;Hwang, Jong-Ha;Seo, Dong-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.56-59
    • /
    • 2011
  • The characterization of the chemical mechanical polishing (CMP) process for undensified phophosilicate glass (PSG) film is reported using design of experiments (DOE). DOE has been used by experimenters to understand the relationship between the input variables and responses of interest in a simple and efficient way, and it typically is beneficial for determining the appropriatesize of experiments with multiple process variables and making statistical inferences for the responses of interest. The equipment controllable parameters used to operate the machine consist of the down force of the wafer carrier, pressure on the back side wafer, table and spindle speeds (SS), slurry flow (SF) rate, pad condition, etc. None of these are independent ofeach other and, thus, the interaction between the parameters also needs to be understoodfor improved process characterization in CMP. In this study, we selected the five controllable equipment parameters the most recommendedby process engineers, viz. the down force (DF), back pressure (BP), table speed (TS), SS, and SF, for the characterization of the CMP process with respect to the material removal rate and film uniformity in percentage terms. The polished material is undensified PSG which is widely used for the plananization of multi-layered metal interconnects. By statistical modeling and the analysis of the metrology data acquired from a series of $2^{5-1}$ fractional factorial designs with two center points, we showed that the DF, BP and TS have the greatest effect on both the removal rate and film uniformity, as expected. It is revealed that the film uniformity of the polished PSG film contains two and three-way interactions. Therefore, one can easily infer that process control based on a better understanding of the process is the key to success in current semiconductor manufacturing, in which the size of the wafer is approaching 300 mm and is scheduled to continuously increase up to 450 mm in or slightly after 2012.

감마선 조사가 전분류의 점도 및 이화학적 특성에 미치는 영향 (Effect of Gamma Irradiation on Viscosity and Physicochemical Properties of Starches)

  • 안경아;조덕조;김현구;김성곤;권중호
    • 한국식품과학회지
    • /
    • 제36권4호
    • /
    • pp.547-552
    • /
    • 2004
  • 방사선 조사 전분류의 확인방법 연구의 일환으로 0, 1.5, 3.0, 4.5 및 6.0 kGy의 감마선을 조사한 옥수수 전분, 고구마 전분 및 감자 전분을 대상으로 일정 조건에서 조사선량별 점도를 Brookfield DV-III programmable rheometer를 사용하여 측정하였다. 전분 현탁액의 농도를 옥수수 전분 8.0%(건물량 7.2%), 고구마 전분 8.5%(건물량 7.3%) 및 감자 전분 9.0%(건물량 7.3%)로 조제하여 100rpm에서 점도를 측정한 결과, 모든 시료에서 조사선량이 증가함에 따라 점도가 유의적으로 감소하였고 (p<0.05), 각각 $R^2$ 0.9754, 0.9618 및 0.9888의 높은 상관성이 확인되었다. 또한 1.5 kGy 조사선량에서도 옥수수 전분 34%, 고구마 전분 57%, 감자전분 51%의 점도 감소가 일어나 저선량 조사의 경우에도 뚜렷한 점도 변화가 관찰되어 방사선 조사 전분류의 확인방법으로써 적용 가능성이 높은 것으로 나타났다. 점도 측정에 의한 조사여부 판별의 신뢰도를 높일 수 있는 보조적인 확인 marker로써 용해도, 팽윤력, 청가 및 알칼리수를 검토한 결과, 조사선량이 증가함에 따라 용해도 및 알칼리수는 유의적으로 증가(p<0.05)한 반면, 팽윤력은 유의적으로 감소(p<0.05)하는 경향이 확인되었다.