• Title/Summary/Keyword: spin-polarized electron current

Search Result 4, Processing Time 0.018 seconds

Electromagnetic Resonant Tunneling System: Double-Magnetic Barriers

  • Kim, Nammee
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.128-133
    • /
    • 2014
  • We study the ballistic spin transport properties in a two-dimensional electron gas system in the presence of magnetic barriers using a transfer matrix method. We concentrate on the size-effect of the magnetic barriers parallel to a two-dimensional electron gas plane. We calculate the transmission probability of the ballistic spin transport in the magnetic barrier structure while varying the width of the magnetic barriers. It is shown that resonant tunneling oscillation is affected by the width and height of the magnetic barriers sensitively as well as by the inter-spacing of the barriers. We also consider the effect of additional electrostatic modulation on the top of the magnetic barriers, which could enhance the current spin polarization. Because all-semiconductor-based devices are free from the resistance mismatch problem, a resonant tunneling structure using the two-dimensional electron gas system with electric-magnetic modulation would play an important role in future spintronics applications. From the results here, we provide information on the physical parameters of a device to produce well-defined spin-polarized current.

Using Electron-beam Resists as Ion Milling Mask for Fabrication of Spin Transfer Devices

  • Nguyen Hoang Yen Thi;Yi, Hyun-Jung;Shin, Kyung-Ho
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • Magnetic excitation and reversal by a spin polarized current via spin transfer have been a central research topic in spintronics due to its application potential. Special techniques are required to fabricate nano-scale magnetic layers in which the effect can be observed and studied. This work discusses the possibility of using electron-beam resists, the nano-scale patterning media, as ion milling mask in a subtractive fabrication method. The possibility is demonstrated by two resists, one positive tone, the ZEP 520A, and one negative tone, the ma-N2403. The advantage and the key points for success of this process will be also addressed.

Giant Magnetoresistance in Low Dimensional Structures: Highlights and Applications of CIP- and CPP-GMR (저차원 나노구조체의 거대자기저항 현상에 대한 연구: CIP-와 CPP-구조에 대한 자기저항 현상의 주요 연구 및 응용)

  • Jang, Eun-Young;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.210-214
    • /
    • 2007
  • Recent years have seen a rapid development of spintronics. One of the major achievements of this field is the understanding of spin dependent process in various physical systems, for example, metallic multilayers showing the giant magnetoresistance (GMR). Today devices based on the GMR are revolutionizing electronic data storage. In this paper, we review recent developments in the research on GMR of low dimensional structures. We describe the magnetoresistance properties of magnetic multilayers, multilayered nanowires and nonopillars, etc.

Interface Engineering in Superconducting Ultra-thin Film of Ga (Ga 극초박막의 계면특성과 초전도 물성제어에 대한 연구)

  • Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.6
    • /
    • pp.212-215
    • /
    • 2010
  • Spin polarized tunneling studies were carried out with Al-Ga bilayer as a spin detector, by Meservey-Tedrow technique. The superconductor (SC)/Insulator (I)/Ferromagnet (FM) tunnel junctions were provided by ultra high vacuum molecular beam epitaxy (UHV-MBE) technique. The analysis of interfacial properties in the Al-Ga bilayer was also carried out by Auger electron spectroscopy. It was observed that the superconducting transition temperature and energy gap were raised in comparison with that of bulk Ga and pure ultrathin Al films. Current studies clearly show how one can modify the material properties at the interface just with a few monolayers.