• Title/Summary/Keyword: spin-echo

Search Result 223, Processing Time 0.019 seconds

Cupric Ion Species in Cu(II)-Exchanged Mesoporous MCM-41 Gallosilicate Determined by Electron Spin Resonance Studies

  • Kim, Jeong-Yeon;Yu, Jong-Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.2
    • /
    • pp.126-140
    • /
    • 1997
  • Mesoporous MCM-41 gallosilicate material was synthesized through shifting through shifting gallosilicate polymer equilibrium towards a MCM-41 phase by addition of acid. The location of Cu(II) exchanged into MCM-41 and its interaction with various adsorbate molecules were investigated by electron spin responance and electron spin echo modulation spectroscopies. It was found that in the fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules. This species is located in a cylindrical channel and rotates rapidly at room temperature. Evacuation at room temperature removes three of these water molecules, leaving the Cu (II) coordinated to three water molecules and anchored to oxygens in the channel wall. Dehydration at 45$0^{\circ}C$ produces one Cu (II) species located in the inner surface of a channel as evidenced by broadening of its ESR lines by oxygen. Adsorption of polar molecules such as water, methanol and ammonia on dehydrated CuNa-MCM-41 gallosilicate material causes changes in the ESR spectrum of Cu (II), indicating the complex formation with these adsorbates. Cu (II) forms a complex with six molecules of methanol as evidenced by an isotropic room temperature ESR signal and ESEM data like upon water adsorption. Cu(II) also forms a complex containing four molecules of ammonia based on resolved nitrogen superhyperfine interaction.

  • PDF

Pulsed NMR Study of $CuF_{2}.2H_{2}O$ ($CuF_{2}.2H_{2}O$의 펄스 핵자기공명 연구)

  • Lee, C.E.;Yoon, E.H.;Lee, C.H.;Kim, K.;Jeon, S.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.13-17
    • /
    • 1993
  • We have studied $CuF_{2}.2H_{2}O$ using $^{1}H$ and $^{19}F$ pulsed nuclear magnetic resonance at 30 MHz. From the data of lineshapes, the spin-lattice relaxation times ($T_1$) and the spin echo decay times, lattice dynamics in the structure is investigated. $T_1$ data from both $^{1}H$ and $^{19}F$ NMR indicate that spin-lattice relaxation is dominated by the paramagnetic ion centers at the Cu sites. The lineshapes at room temperature appear to be strongly affected by exchange narrowing and motional narrowing.

  • PDF

Accurate Localization of Metal Electrodes Using Magnetic Resonance Imaging (자기공명영상을 이용한 금속전극의 정확한 위치 결정)

  • Joe, Eun-Hae;Ghim, Min-Oh;Ha, Yoon;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2011
  • Purpose : Localization using MRI is difficult due to susceptibility induced artifacts caused by metal electrodes. Here we took an advantage of the B0 pattern induced by the metal electrodes by using an oblique-view imaging method. Materials and Methods : Metal electrode models with various diameters and susceptibilities were simulated to understand the aspect of field distortion. We set localization criteria for a turbo spin-echo (TSE) sequence usingconventional ($90^{\circ}$ view) and $45^{\circ}$ oblique-view imaging method through simulation of images with various resolutions and validated the criteria usingphantom images acquired by a 3.0T clinical MRI system. For a gradient-refocused echo (GRE) sequence, which is relatively more sensitive to field inhomogeneity, we used phase images to find the center of electrode. Results : There was least field inhomogeneity along the $45^{\circ}$ line that penetrated the center of the electrode. Therefore, our criteria for the TSE sequence with $45^{\circ}$ oblique-view was coincided regardless of susceptibility. And with $45^{\circ}$ oblique-view angle images, pixel shifts were bidirectional so we can detect the location of electrodes even in low resolution. For the GRE sequence, the $45^{\circ}$ oblique-view anglemethod madethe lines where field polarity changes become coincident to the Cartesian grid so the localization of the center coordinates was more facilitated. Conclusion : We suggested the method for accurate localization of electrode using $45^{\circ}$ oblique-view angle imaging. It is expected to be a novelmethodto monitoring an electrophysiological brain study and brain neurosurgery.

High-Resolution MRI Study on Mouse Brain Using Micro-Imaging (초고해상도 미세영상 기법을 이용한 Mouse 뇌의 자기공명영상 연구)

  • Han, Doug-Young;Yoon, Moon-Hyun;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • Purpose : By using the micro-imaging unit modified from NMR spectrometer, the high resolution MRI protocols of finer than 100 micron in 5 minutes, is sought for mouse, which plays a central role in animal studies Materials and Methods : C57BL/6 mouse, lighter than 50 gram, is used for the experiments. The superconducting magnet is vertical type with 89 mm inner diameter at 4.9 Tesla. The diameter of rf-coil is 30 mm. Mostly used techniques are the fast spin echo and the gradient echo pulse sequence. Results : For 2D images, proton density and T2 weighted images are obtained and their optimum experimental variables were sought. Minute structure of mouse brain can be recognized and 3D brain image is also obtained additionally. 3D image will be useful particularly for the dynamic contrast study using various contrast agents. Conclusion : Like the case of human and other small animals, the high resolution of mouse brain is enough to recognize the minute structure of it. Recently, similar studies are reported domestically, but it seems only a beginning stage. Due to easiness of breeding/control, mouse MRI study will soon play a vital part in brain study.

  • PDF

Effect of Manganese Content on the Magnetic Susceptibility of Ferrous-Manganese Alloys: Correlation between Microstructure on X-Ray Diffraction and Size of the Low-Intensity Area on MRI

  • Youn, Sung Won;Kim, Moon Jung;Yi, Seounghoon;Ahn, Hyun Jin;Park, Kwan Kyu;Lee, Jongmin;Lee, Young-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.76-87
    • /
    • 2015
  • Purpose: There is an ongoing search for a stent material that produces a reduced susceptibility artifact. This study evaluated the effect of manganese (Mn) content on the MRI susceptibility artifact of ferrous-manganese (Fe-Mn) alloys, and investigated the correlation between MRI findings and measurements of Fe-Mn microstructure on X-ray diffraction (XRD). Materials and Methods: Fe-Mn binary alloys were prepared with Mn contents varying from 10% to 35% by weight (i.e., 10%, 15%, 20%, 25%, 30%, and 35%; designated as Fe-10Mn, Fe-15Mn, Fe-20Mn, Fe-25Mn, Fe-30Mn, and Fe-35Mn, respectively), and their microstructure was evaluated using XRD. Three-dimensional spoiled gradient echo sequences of cylindrical specimens were obtained in parallel and perpendicular to the static magnetic field (B0). In addition, T1-weighted spin echo, T2-weighted fast spin echo, and $T2^*$weighted gradient echo images were obtained. The size of the low-intensity area on MRI was measured for each of the Fe-Mn binary alloys prepared. Results: Three phases of ${\alpha}^{\prime}$-martensite, ${\gamma}$-austenite, and ${\varepsilon}$-martensite were seen on XRD, and their composition changed from ${\alpha}^{\prime}$-martensite to ${\gamma}$-austenite and/or ${\varepsilon}$-martensite, with increasing Mn content. The Fe-10Mn and Fe-15Mn specimens comprised ${\alpha}^{\prime}$-martensite, the Fe-20Mn and Fe-25Mn specimens comprised ${\gamma}+{\varepsilon}$ phases, and the Fe-30Mn and Fe-35Mn specimens exhibited a single ${\gamma}$ phase. The size of the low-intensity areas of Fe-Mn on MRI decreased relative to its microstructure on XRD with increasing Mn content. Conclusion: Based on these findings, proper conditioning of the Mn content in Fe-Mn alloys will improve its visibility on MR angiography, and a Mn content of more than 25% is recommended to reduce the magnetic susceptibility artifacts on MRI. A reduced artifact of Fe-Mn alloys on MRI is closely related to the paramagnetic constitution of ${\gamma}$-austenite and/or ${\varepsilon}$-martensite.

Feasibility of Spin-Echo Echo-Planar Imaging MR Elastography in Livers of Children and Young Adults

  • Kim, Jin Kyem;Yoon, Haesung;Lee, Mi-Jung;Kim, Myung-Joon;Han, Kyunghwa;Koh, Hong;Kim, Seung;Han, Seok Joo;Shin, Hyun Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.251-258
    • /
    • 2019
  • Purpose: To assess the feasibility of the use of spin-echo echo-planar imaging (SE-EPI) magnetic resonance elastography (MRE) in livers of children and young adults. Materials and Methods: Patients (${\leq}20$ years old) who underwent 3T SE-EPI MRE were included retrospectively. Subjects were divided into three groups according to the purpose of the liver MRI: suspicion of fatty liver or focal fat deposition in the liver (FAT group), liver fibrosis after receiving a Kasai operation from biliary atresia (BA group), and hepatic iron deposition after receiving chemotherapy or transfusions (IRON group). Technical failure of MRE was defined when a stiffness map showed no pixel value with a confidence index higher than 95%, and the patients were divided as success and failure groups accordingly. Clinical findings including age, gender, weight, height, and body mass index and magnetic resonance imaging results including proton density fat fraction (PDFF), $T2^*$, and MRE values were assessed. Factors affecting failure of MRE were evaluated and the image quality in wave propagation image and stiffness map was evaluated using the appropriate scores. Results: Among total 240 patients (median 15 years, 211 patients in the FAT, 21 patients in the BA, and 8 patients in the IRON groups), technical failure was noted in six patients in the IRON group (6/8 patients, 75%), while there were no failures noted in the FAT and BA groups. These six patients had $T2^*$ values ranging from 0.9 to 3.8 ms. The image quality scores were not significantly different between the FAT and BA groups (P > 0.999), while the scores were significantly lower in the IRON group (P < 0.001). Conclusion: The 3T SE-EPI MRE in children and young adults had a high technical success rate. The technical failure was occurred in children with decreased $T2^*$ value (${\leq}3.8ms$) from iron deposition.

Assessment of the Cerebrospinal Fluid Effect on the Chemical Exchange Saturation Transfer Map Obtained from the Full Z-Spectrum in the Elderly Human Brain

  • Park, Soonchan;Jang, Joon;Oh, Jang-Hoon;Ryu, Chang-Woo;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.139-149
    • /
    • 2019
  • Purpose: With neurodegeneration, the signal intensity of the cerebrospinal fluid (CSF) in the brain increases. The objective of this study was to evaluate chemical exchange saturation transfer (CEST) signals with and without the contribution of CSF signals in elderly human brains using two different 3T magnetic resonance imaging (MRI) sequences Methods: Full CEST signals were acquired in ten subjects (Group I) with a three-dimensional (3D)-segmented gradient-echo echo-planar imaging (EPI) sequence and in ten other subjects (Group II) with a 3D gradient and spin-echo (GRASE) sequence using two different 3T MRI systems. The segmented tissue compartments of gray and white matter were used to mask the CSF signals in the full CEST images. Two sets of magnetization transfer ratio asymmetry (MTRasym) maps were obtained for each offset frequency in each subject with and without masking the CSF signals (masked and unmasked conditions, respectively) and later compared using paired t-tests. Results: The region-of-interest (ROI)-based analyses showed that the MTRasym values for both the 3D-segmented gradient-echo EPI and 3D GRASE sequences were altered under the masked condition compared with the unmasked condition at several ROIs and offset frequencies. Conclusions: Depending on the imaging sequence, the MTRasym values can be overestimated for some areas of the elderly human brain when CSF signals are unmasked. Therefore, it is necessary to develop a method to minimize this overestimation in the case of elderly patients.

Assessment of the Location of the Peroneus Longus Tendon in the Cuboid Groove Using 3D Isotropic Fast Spin-Echo MRI

  • Lee, Ji Yoon;Choo, Hye Jung;Lee, Sun Joo;Jung, Joon-Yong;Kim, Dong Wook;Baek, Jin Wook;Heo, Young Jin;Gwak, Heui-Chul
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.1
    • /
    • pp.21-29
    • /
    • 2020
  • Purpose: To investigate normal location of the peroneus longus tendon (PL) in the cuboid groove by evaluating it between ankles with no significant abnormality (asymptomatic group) and those with retromalleolar PL dislocation (dislocation group) using three-dimensional isotropic fast spin-echo (3D-FSE) magnetic resonance imaging (MRI) of the ankle. Materials and Methods: Thirty-six and 32 3D-FSE ankle MRI were assigned to the asymptomatic group and the dislocation group, respectively. Using multiplanar reformatted 3D-FSE, qualitative PL location (i.e., outside, overlying, and inside in relation to the cuboid groove), quantitative PL location (i.e., distance between the proximal margins of PL and cuboid groove), and cuboid groove size were measured in lateral, middle, and medial levels of the cuboid groove. Results: In the asymptomatic group, 64%, 42%, and 11%, respectively, had the outside or overlying-located PL in lateral, middle, and medial levels of the cuboid groove and the quantitative location gradually decreased from lateral to medial level. Qualitative and quantitative PL locations were not significantly different between the asymptomatic group and dislocation group. Cuboid groove size showed significant negative correlation with quantitative PL location in both groups. Conclusion: Outside- or overlying-located PL in lateral and middle levels of the cuboid groove would be a normal finding, regardless of PL status at the retromalleolar level.

Evaluation of Hydration Effect on Human Skin by $^1H$ MRS at 14.1T

  • Choi Chi-Bong;Hong Sung-Tak;Choe Bo-Young;Woo Dong-Chul;Yoon Seong-Ik;Cho Ji-Hyun;Lee Chul-Hyun;Cheong Chae-Joon;Park Sang-Yong;Oh Chil-Hwan
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.105-114
    • /
    • 2006
  • Purpose: We achieved high resolution MR imaging and spectra of human skin in vitro with using a 14.1 T MRI/MRS system, and evaluated the hydration effect of various cosmetic products by measuring the skin's. moisture concentration. Materials and Methods: We used the Bruker 14.1 T MRI/MRS system with a vertical standard bore that was equipped with a DMX spectrometer gradient system (200 G/cm at a maximum 40 A), RF resonators (2, 5 and 10 mm) and Para Vision software. Spin echo and fast spin echo pulse sequences were employed for obtaining the high resolution MR images. The 3D-localized point resolved spectroscopy (PRESS) method was used to acquire the MR spectra. Results: The high resolution MR images and spectra of human skin in vitro were successfully obtained on a 14.1 T system. The water concentration of human skin after applying a moisturizer was higher than that before applying a moisturizer. Conclusions: The present study demonstrated that the high-resolution MR images and spectra of human skin from a high field NMR instrument could be applicable to evaluating the hydration state of the stratum corneum.

  • PDF

Location and Adsorbate Interactions of V(IV) Species in VH-SAPO-34 Studied by EPR and Electron Spin-Echo Modulation Spectroscopies

  • Gernho Back;Cho, Young-Soo;Lee, Yong-Ill;Kim, Yanghee;Larry Kevan
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.2
    • /
    • pp.73-90
    • /
    • 2001
  • Vanadium-doped H-SAPO-34 samples were prepared by a high-temperature solid-state reaction between SAPO-34 and the paramagnetic V(Ⅳ) species and characterized carefully by EPR and Electron Spin-Echo Modulation(ESEM) studies. The paramagnetic vanadium species generated in both V$_2$O$\_$5/ and VOSO$\_$4/ of SAPO-34 have the same narrow range of g value fur vanadium species assigned to VO$\^$2+/ inferred from the isotropic EPR spectrum at 293 K. The EPR and ESEM data indicate that the V(Ⅳ) species exist as a vanadyl ion either as [V(Ⅳ)]O$\^$2+/ or V$\^$4+/. The [V(Ⅳ)]O$\^$2+/ species seems to be more probable because SAPO-34 having a low negative framework charged and more positively charged species like V$\^$4+/can not be easily stabilized. Tetravalent vanadium ion in vadium-doped H- SAPO-34 can only be observed at the temperature lower than 77 K, while the vanadyl ion, VO$\^$2+/in the activated sample of VH-SAPO-34 can produce the ion even at room temperature. After the adsorption of methanol, ethanol, propanol or ethene to the VH-SAPO-34, only one molecule coordinate to [V(Ⅳ)]O$\^$2+/ was observed in EPR and ESEM spectra.

  • PDF