• Title/Summary/Keyword: spin valve structure

Search Result 63, Processing Time 0.021 seconds

Detection Characteristics of a Red Blood Cell Coupled with Micron Magnetic Beads by Using GMR-SV Device (GMR-SV 소자를 이용한 미크론 자성비드와 결합된 적혈구 검출 특성 연구)

  • Lee, Jae-Yeon;Kim, Moon-Jong;Lee, Sang-Suk;Rhee, Jin-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.4
    • /
    • pp.101-106
    • /
    • 2014
  • The glass/Ta(5.8 nm)/NiFe(5 nm)/Cu(2.3 nm)/NiFe(3 nm)/IrMn(12 nm)/Ta(5.8 nm) GMR-SV (giantmagneto-resistance-spin valve) multilayer structure films with a magnetoresistance ratio (MR) of 5.0 % and a magnetic sensitivity (MS) of 1.5%/Oe was deposited by dc magnetron sputtering method. Also, GMR-SV device having a width of $7{\mu}m{\sim}8{\mu}m$ similar to the diameter of RBC (red blood cell) was fabricated by the light lithography process. When RBCs coupled with several magnetic beads with a diameter of $1{\mu}m$ dropped upon the GMR-SV device having MR = 1.06% and MS = 0.3 %/Oe, there is observed the variation of about included of a resistance value of ${\Delta}R=0.4{\Omega}$ and ${\Delta}MR=0.15%$ around a external magnetic field of -0.6 Oe. From these results, the GMR-SV device having the width magnitude of a few micron size can be applied as the biosensor for the analysis of a new magnetic property of hemoglobin inside of RBC combined to magnetic beads.

Effect of composition and structure on exchange anisotropy of IrxMn(100-x)/NiFe films

  • Suh, Su-jung;Park, Young-suk;Ro, Jae-chul;Yong-sung;Yoon, Dae-ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.91-95
    • /
    • 1998
  • Exchange anisotropy between IrMn antiferromagnetic layer and NiFe ferromagnetic layer has been studied in IrxMn(100-x)/NiFe/Buffr/Si(100) films deposited by D. C. magnetron sputtering method. Among Zr, Ta, and Cu used as buffer layer, Zr and Ta enhanced the fcc(111) texture of NiFe and IeMn layer, but Cu did not affect microstructure of those layer. Strong fcc(111) texture of IrMn layer was confirmed to be the origin of exchange anisotropy of IrMn. Ir composition control in IrMn layer showed that {{{{ gamma -phase}}}} IrMn is stabilized between 10 and 30 at % Ir, an 21 at. % Ir in IrMn layer was optimum composition that showed maximum exchange anisotropy field. above 200 ${\AA}$ thickness of IrMn, antiferromagnetic property is stabilzed to show saturated exchange anisotropy field. Based pressure was confirmed to be critical requisite in IrMn-based spin-valve GMR system.

  • PDF

Planar Hall Sensor Used for Microbead Detection and Biochip Application

  • Thanh, N.T.;Kim, D.Y.;Kim, C.G.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.40-44
    • /
    • 2007
  • The Planar Hall effect in a spin valve structure has been applied as a biosensor being capable of detecting $Dynabeads^{(R)}$ M-280. The sensor performance was tested under the application of a DC magnetic field where the output signals were obtained from a nanovoltmeter. The sensor with the pattern size of $50{\times}100{\mu}m^2$ has produced high sensitivity; especially, the real-time profiles by using that sensor revealed significant performance at external applied magnetic field of around 7.0 Oe with the resolution of 0.04 beads per $\mu m^2$. Finally, a successful array including 24 patterns with the single sensor size of $3{\times}3{\mu}m^2$ has shown the uniform and stable signals for single magnetic bead detection. The comparison of this sensor signal with the others has proved feasibility for biosensor application. This, connecting with the advantages of more stable and high signal to noise of PHR sensor's behaviors, can be used to detect the biomolecules and provide a vehicle for detection and study of other molecular interaction.