• Title/Summary/Keyword: spin valve structure

Search Result 63, Processing Time 0.031 seconds

The Magnetoresistance Properties of Spin Valves with CoFe/Ru/CoFe/FeMn Synthetic Antiferromagnet (Synthetic antiferromagnet CoFe/Ru/CoFe/FeMn을 이용한 스핀 밸브 구조의 자기저항 특성)

  • Jang, S.H.;Kang, T.;Kim, M.J.;Kim, H.J.;Kim, K.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.196-202
    • /
    • 2000
  • Top synthetic spin valves with structure Ta/NiFe/CoFe/Cu/CoFe(P1)/Ru/CoFe(P2)/FeMn/Ta on Si(100) substrate with natural oxide were prepared by dc magnetron sputtering system, and investigated on the magnetoresistance properties and effective exchange bias field. As the thickness of FeMn increased above 150 $\AA$, MR ratio was decreased due to the current shunting effect. As the thickness of free layer decreased below 40$\AA$, MR ratio was reduced rapidly. In case of 40 $\AA$ thick of free layer, spin valve film with a structure Si(100)/Ta(50 $\AA$)/NiFe(27 $\AA$)/CoFe(13 $\AA$)/Cu(26 $\AA$)/CoFe(30 $\AA$)/Ru(7 $\AA$)/CoFe(15 $\AA$)/FeMn(100 $\AA$)/Ta(50 $\AA$) exhibited maximum MR ratio of 7.5 % and an effective exchange bias field of 600 Oe, respectively. Thickness difference dependence in this synthetic spin valve structure on effective exchange field was investigated and interpreted by the analytical method. It should be noted that thickness increase of CoFe(P 1) and decrease of CoFe(P2) in synthetic antiferromagnet leaded to the decrease in effective exchange bias field by experimentally and analytically.

  • PDF

Study on the Improvement of Exchange Bias and Magnetoresistance in Co/Cu/Co/FeMn Spin Valve by Heat Treatment (Co/Cu/Co/FeMn 스핀밸브의 자기저항 특성 향상 연구)

  • Kim, Hong-Jin;Bae, Jun-Soo;Noh, Eun-Sun;Lee, Taek-Dong;Lee, Hyuck-Mo
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.24-29
    • /
    • 2002
  • It was observed that exchange bias field was increased with smooth surface and better ${\gamma}$-FeMn formation. Sputtering conditions were varied for the control of the surface roughness and ${\gamma}$-FeMn formation. From the results of Cu deposition as underlayer, it was found that ${\gamma}$-FeMn formation was closely related with the thickness of underlayer. After heat treatment, exchange bias field was increased over three times. This improvement was likely that the crystallites of ${\gamma}$-FeMn were well formed. In Co/Cu/Co/FeMn spin valve structure, magnetoresistance was increased over 1.4 times through the heat treatment. This was due to the disappearance of Co/Cu intermixed dead layer and removal of defect, and this was examined by AES analysis.

Regional Distribution of Isotropy Magnetic Property of Dual-type Giant Magnetoresistance-Spin Valve Multilayer (이중구조 거대자기저항-스핀밸브 박막의 자기등방성 영역분포에 관한 연구)

  • Khajidmaa, Purevdorj;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.6
    • /
    • pp.193-199
    • /
    • 2013
  • The regional distribution of magnetic isotropy depending on the post annealing condition for the dual-type structure GMR-SV (giant magnetoresistance-spin valve) of NiFe/Cu/NiFe/IrMn/NiFe/Cu/NiFe multilayer was investigated. The rotation of in-plane ferromagnetic layer induced by controlment of the post annealing temperature inside of the vacuum chamber. The magnetoresistive curves of a dual-type IrMn based GMR-SV depending on the direction of the magnetization easy axis of the free layer and the pinned layer are measured by between $0^{\circ}$ and $360^{\circ}$ angles for the applied fields. The optimum annealing temperature having a steady and isotropy magnetic sensitivity of 1.52 %/Oe was $107^{\circ}C$ in the rotational section of $0{\sim}90^{\circ}$. By investigating the switching process of magnetization for an arbitrary measuring direction, the in-plane orthogonal magnetization for the dual-type GMR-SV multilayer can be used by a high sensitive biosensor for detection of magnetized micro-beads.

The Fabrication and Magnetoresistance of Nanometer-sized Spin Device Driven by Current Perpendicular to the Plane (수직전류 인가형 나노 스핀소자의 제조 및 자기저항 특성)

  • Chun, M.G.;Lee, H.J.;Jeung, W.Y.;Kim, K.Y.;Kim, C.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • In order to make submicron cell for spin-injection device, lift-off method using Pt stencil and wet etching was chosen. This approach allows batch fabrication of stencil substrate with electron-beam lithography. It simplifies the process between magnetic film stack deposition and final device testing, thus enabling rapid turnaround in sample fabrication. Submicron junctions with size of $200nm{\times}300nm$ and $500nm{\times}500nm$ 500 nm and pseudo spin valve structure of $CoFe(30{\AA})/Cu(100{\AA})/CoFe(120{\AA}$) was deposited into the nanojunctions. MR ratio was 0.8 and $1.1{\%}$, respectively and spin transfer effect was confirmed with critical current of $7.65{\times}10^7A/cm^2$.

Exchange bias in NiFe/FeMn/NiFe multilayers

  • Sankaranarayanan, V.K.;Lee, Y.W.;Shalyguina, E.E.;Kim, C.G.;kim, C.O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.55-58
    • /
    • 2003
  • FeMn based spin valves often consist of a NiFe/FeMn/NiFe trilayer structure. We have investigated the evolution of exchange bias at the bottom and top interfaces in the NiFe(5nm)/FeMn(x)/NiFe(5nm) trilayer structure as a function of FeMn thickness in the range 3 nm to 30 nm. The XRD results indicate (111) textured growth for NiFe and FeMn layers. The magnetization studies using VSM show two hysteresis loops corresponding to the bottom NiFe seed layer and top NiFe layers with greater bias for the bottom NiFe layer, for FeMn thickness equal to and above 5 nm. The larger exchange bias for the bottom seed layer is confirmed by the surface sensitive MOKE hysteresis loop measurements which show gradual weakening of the MOKE hysteresis loop for the bottom NiFe layer with increasing FeMn thickness. The observed large exchange bias in a spin valve structure is usually attributed to the pinning NiFe layer on top of the FeMn layer, even when a NiFe seed layer of a few nm thickness is present, whereas, in reality it may be arising from the bottom seed layer, as shown by the present study.

  • PDF

Shape Magnetic Anisotropy on Magnetic Easy Axis of NiFe/Cu/NiFe/IrMn Spin Valve Thin Film (NiFe/Cu/NiFe/IrMn 스핀밸브 박막소자의 자화 용이축에 따른 형상 자기이방성)

  • Choi, Jong-Gu;Kwak, Tae-Joon;Lee, Sang-Suk;Sim, Jung-Taek
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.35-40
    • /
    • 2010
  • The GMR-SV (giant magnetoresistance-spin valve) device depending on the micro patterned features according to two easy directions of longitudinal and transversal axes has been studied. The GMR-SV multilayer structure was Ta(5 nm)/NiFe(8 nm)/Cu(2.3 nm)/NiFe(4 nm)/IrMn(8 nm)/Ta(2.5 nm). The applied anisotropy direction of the GMR-SV thin film was performed under the magnitude of 300 Oe using by permanent magnet during the deposition. The size of micro patterned device was a $1\;{\times}\;18\;{\mu}m^2$ after the photo lithography process. In the aspects of the shape magnetic anisotropy effect, there are two conditions of fabrication for GMR-SV device. Firstly, the direction of sensing current was perpendicular to the magnetic easy axis of the pinned NiFe/IrMn bilayer with the transversal direction of device. Secondly, the direction of shape magnetic anisotropy was same to the magnetic easy axis of the free NiFe layer with the longitudinal direction of device.

Magnetic Bio-Sensor Using Planar Hall Effect (평면홀 효과를 이용한 자기 바이오센서)

  • Oh, Sun-Jong;Hung, Tran Quang;Kumar., S. Ananda;Kim, Cheol-Gi;Kim, Dong-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.5
    • /
    • pp.421-426
    • /
    • 2008
  • The magnetic bio-sensor used the PHR (planar hall resistance) effect generated by the free layer in spin-valve giant magnetoresistance structure of Ta/NiFe/CoFe/Cu/NiFe/IrMn/Ta. The PHR element with micrometer size was fabricated through the photolithograph and dry etching process. The PHR signal with magnetic field was measured under the conditions of with and without single magnetic bead. A single magnetic bead of diameter $2.8\;{\mu}m$ was successfully detected using the PHR sensor. Therefore, the high resolution PHR sensor can be applied to bio-sensor application utilizing the output voltage variation of the PHR signals in the presence and absence of a single magnetic bead.

Coersivity Alteration of Free Layer in the [Co/Pd] Spin-valves with Perpendicular Magnetic Anisotropy ([Pd/Co] 다층박막을 이용한 수직스핀밸브 구조에서 비자성층에 인접한 강자성 물질과 그 두께에 따른 자유층의 보자력 변화)

  • Heo, Jang;Choi, Hyong-Rok;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.89-93
    • /
    • 2010
  • We study the giant magneto-resistance (GMR), coercivity and their dependence on the ferromagnetic layers adjacent to the nonmagnetic layer in a spin-valve structure, [Pd/ferromagnetic] multilayers with perpendicular anisotropy. We fabricated a basic spinvalve structure of $[Pd/Co]_2$/ferro-magnetic layer/nonmagnet/ferro-magnetic layer/$[Pd/Co]_2$/FeMn and investigated the dependence of its GMR and magnetic properties such ad coercivity on the ferromagnetic material to reduce the coercivity of the free layer. We try to reduce the freelayer coercivity by controlled the anisotropy, we insert the material NiFe, $Co_8Fe_2$, $Co_9Fe_1$ to ferromagnetic layers adjacent to the Cu layer. Then, we have been able to reduce the coercivity as low as 100 Oe, and also achieved 6.7% of magneto-resistance ratio when the ferromagnetic layer thickness was 0,7 nm.