• 제목/요약/키워드: spin value

검색결과 245건 처리시간 0.029초

KSR-III 탑재부 스핀안정화 기법 연구 (Spin-Stabilization for the Second Stage of Korea Sounding Rocket-III)

  • 선병찬;최형돈
    • 한국항공우주학회지
    • /
    • 제30권7호
    • /
    • pp.137-143
    • /
    • 2002
  • 본 논문에서는 가스제트 방식의 추력기를 이용해서 KSR-III의 탑재부를 스핀안정화시키는 방식에 대해 연구를 수행하였다. 탑재부 상에서 발생가능한 오차 요인들에 대해 정의하고, 그로 인해 자세각 및 각속도가 증가하는 양상에 대해 분석하였다. 추력비정렬오차로 인한 탑재부 상의 자세각 및 각속도 오차 증가를 살펴봄으로써 오차 증가를 최소로 하는 최적의 스핀주파수 및 정상스핀시간에 대한 관계식을 제시하였다. 관계식을 만족하는 모든 해들 중에서 낙하점 오차를 최소로 하는 값을 구하기 위해서는 가능한 모든 오차 조합들에 대한 몬테카를로 시뮬레이션이 필요하게 되지만, 본 논문에서는 오차들에 의한 힘 및 모멘트가 각 축에 대해 극대화되는 경우에 대해서만 시뮬레이션해 봄으로써 적절한 해를 손쉽게 구할 수 있는 부최적해 접근방식을 채택하였다. 이상과 같은 방법을 KSR-III의 탑재부에 적용해 봄으로써 적절한 크기의 스핀 주파수와 정상스핀시간을 결정할 수 있음을 보였다.

마이크로 4.7T MRI SE Sequence에서 T2강조효과를 위한 최적의 Flip Angle (Optimal Flip Angle for T2-Weighted Effect in Micro 4.7T MRI SE Sequence)

  • 이상호
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권2호
    • /
    • pp.113-117
    • /
    • 2019
  • The purpose of this study was to investigate the FA value which can produce the best T2-weighted images by measuring the signal intensity and noise according to the FA value change in the brain image and the abdominal image of the mouse using micro-MRI. Brain imaging and abdominal imaging of BALB / C mice weighing 20g were performed using 4.7T (Bruker BioSpin MRI GmbH) micro-MRI equipment, Turbo RARE-T2 (spin echo-T2) images were scanned at TR 3500 msec and TE 36 msec. The changes of the FA values were $60^{\circ}$, $80^{\circ}$, $100^{\circ}$, $120^{\circ}$, $140^{\circ}$, $160^{\circ}$ and $180^{\circ}$. We measured signal intensity according to FA values of ventricle and thalamus in brain imaging, The signal intensity of kidney and muscle around the kidney was measured in abdominal images. To obtain SNR and CNR, we measured the background signals of two different parts, not the tissue. In the brain (thalamus) image, the signal intensity of FA $100^{\circ}$ was 7,433 and SNR (6.49) was the highest. In the abdominal (kidney) image, the signal intensity was highest at 16,523 when FA was $120^{\circ}$, and the highest SNR was 8.54 when FA was $140^{\circ}$. The CNR value of the brain image was 1.38 at FA $60^{\circ}$ and gradually increased to 8.29 at FA $180^{\circ}$. The CNR value of the muscle adjacent to the kidney gradually increased from 2.36 when the FA value was $60^{\circ}$ and the highest value was 4,57 at the FA value $180^{\circ}$.

A Novel Calibration Method Research of the Scale Factor for the All-optical Atomic Spin Inertial Measurement Device

  • Zou, Sheng;Zhang, Hong;Chen, Xi-yuan;Chen, Yao;Fang, Jian-cheng
    • Journal of the Optical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.415-420
    • /
    • 2015
  • A novel method to measure the scale factor for the all-optical atomic spin inertial measurement device (ASIMD) is demonstrated in this paper. The method can realize the calibration of the scale factor by a self-consistent method with small errors in the quiescent state. At first, the matured IMU (inertial measurement unit) device was fixed on an optical platform together with the ASIMD, and it has been used to calibrate the scale factor for the ASIMD. The results show that there were some errors causing the inaccuracy of the experiment. By the comparative analysis of theory and experiment, the ASIMD was unable to keep pace with the IMU. Considering the characteristics of the ASIMD, the mismatch between the driven frequency of the optical platform and the bandwidth of the ASIMD was the major reason. An all-optical atomic spin magnetometer was set up at first. The sensitivity of the magnetometer is ultra-high, and it can be used to detect the magnetization of spin-polarized noble gas. The gyromagnetic ratio of the noble gas is a physical constant, and it has already been measured accurately. So a novel calibration method for scale factor based on the gyromagnetic ratio has been presented. The relevant theoretical analysis and experiments have been implemented. The results showed that the scale factor of the device was $7.272V/^{\circ}/s$ by multi-group experiments with the maximum error value 0.49%.

스핀코팅법으로 제작한 산화아연/산화구리 이종접합의 정류 및 일산화질소 가스 감지 특성 (Rectifying and Nitrogen Monoxide Gas Sensing Properties of a Spin-Coated ZnO/CuO Heterojunction)

  • 황현정;김효진
    • 한국재료학회지
    • /
    • 제26권2호
    • /
    • pp.84-89
    • /
    • 2016
  • We present the rectifying and nitrogen monoxide (NO) gas sensing properties of an oxide semiconductor heterostructure composed of n-type zinc oxide (ZnO) and p-type copper oxide thin layers. A CuO thin layer was first formed on an indium-tin-oxide-coated glass substrate by sol-gel spin coating method using copper acetate monohydrate and diethanolamine as precursors; then, to form a p-n oxide heterostructure, a ZnO thin layer was spin-coated on the CuO layer using copper zinc dihydrate and diethanolamine. The crystalline structures and microstructures of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy. The observed current-voltage characteristics of the p-n oxide heterostructure showed a non-linear diode-like rectifying behavior at various temperatures ranging from room temperature to $200^{\circ}C$. When the spin-coated ZnO/CuO heterojunction was exposed to the acceptor gas NO in dry air, a significant increase in the forward diode current of the p-n junction was observed. It was found that the NO gas response of the ZnO/CuO heterostructure exhibited a maximum value at an operating temperature as low as $100^{\circ}C$ and increased gradually with increasing of the NO gas concentration up to 30 ppm. The experimental results indicate that the spin-coated ZnO/CuO heterojunction structure has significant potential applications for gas sensors and other oxide electronics.

스핀 스프레이 법으로 제조한 망가나이트 박막의 전기적 특성 (Electrical Properties of Manganite Thin Films Prepared by Spin Spray Method)

  • 전창준;정영훈;윤지선;박운익;백종후;홍연우;조정호
    • 한국전기전자재료학회논문지
    • /
    • 제30권1호
    • /
    • pp.17-22
    • /
    • 2017
  • Effects of pH value and deposition time on the electrical properties of (NMC) Ni-Mn-Cu-O and (NMCC) Ni-Mn-Cu-Co-O thin films were investigated. The NMC and NMCC films were prepared by spin spray method. The crystal structure and thickness of the annealed films were changed by the pH value and deposition time, respectively. A single phase of cubic spinel structure was confirmed for the annealed films deposited from solutions with pH 7.6. The resistivity of the annealed films was affected by the crystal structure and microstructure. The TCR (temperature coefficient of resistance) was dependent on the $Mn^{3+}/Mn^{4+}$. Typically, the resistivity of $70.5{\Omega}{\cdot}cm$ and TCR of -3.56%/K at room temperature were obtained for NMCC films deposited from solutions with pH 7.6 for 5 min, and annealed at $450^{\circ}C$ for 3 h.

Exchange Anisotropy of Polycrystalline Ferromagnetic/Antiferromagnetic Bilayers

  • Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • 제7권3호
    • /
    • pp.80-93
    • /
    • 2002
  • The role of magnetic anisotropy of the antiferromagnetic layer on the magnetization process of exchange coupled polycrystalline ferromagnetidantiferromagnetic bilayers is discussed. In order to elucidate the magnetic torque response of Ni-Fe/Mn-Ir bilayers, the single spin ensemble model is newly introduced, taking into account the two-dimensionally random distribution of the magnetic anisotropy axes of the antiferromagnetic grains. The mechanism of the reversible inducement of the exchange anisotropy along desirable directions by field cooling procedure is successfully explained with the new model. Unidirectional anisotropy constant, J$k$, of polycrystalline Ni-Fe/Mn-Ir and Co-Fe/Mn-Ir bilayers is investigated as functions of the chemical composition of both the ferromagnetic layer and the antiferromagnetic layer. The effects of microstructure and surface modification of the antiferromagnetic layer on JK are also discussed. As a notable result, an extra large value of J$k$, which exceeds 0.5 erg/cm$^2$, is obtained for $Co_{70}Fe_{30}Mn_{75}Ir_{25}$ bilayer with the ultra-thin (50${\AA}$∼100${\AA}$) Mn-Ir layer. The exchange anisotropy of $Co_{70}Fe_{30}$ 40 ${\AA}/Mn_{75}Ir_{25}$ 100 ${\AA}$ bilayer is stable for thermal annealing up to $400{^{\circ}C}$, which is sufficiently high for the application of spin valve magnetoresistive devices.

Structural Characteristics of 3- and 4-Coordinate Borons from 11B MAS NMR and Single-Crystal NMR in the Nonlinear Optical Material BiB3O6

  • Kim, Woo Young;Lim, Ae Ran
    • 한국자기공명학회논문지
    • /
    • 제17권1호
    • /
    • pp.24-29
    • /
    • 2013
  • The structural characteristics of 4-coordinate $BO_4$ [B(1)] and 3-coordinate $BO_3$ [B(2)] groups in $BiB_3O_6$ were studied by $^{11}B$ magic angle spinning (MAS) and single-crystal nuclear magnetic resonance (NMR) spectroscopy. The spin-lattice relaxation time in the laboratory frame, $T_1$, for $^{11}B$ decreased slowly with increasing temperature, whereas the spin-lattice relaxation times in the rotating frame, $T_{1{\rho}}$, for B(1) and B(2), which differed from $T_1$, were nearly constant. Further, $T_{1{\rho}}$ for B(1) and B(2) showed very similar trends, although the $T_{1{\rho}}$ value of B(2) was shorter than that of B(1). The 3-coordinate $BO_3$ and 4-coordinate $BO_4$ were distinguished by $^{11}B$ MAS NMR spectrum and $T_{1{\rho}}$.

Spin-glass behavior in (A,B)-site deficient manganese perovskites

  • Lee, Kyu-Won;Phan, Manh-Huong;Yu, Seong-Cho;Nguyen Chau;Tho, Nguyen-Duc
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2003년도 하계학술연구발표회 및 한.일 공동심포지엄
    • /
    • pp.150-151
    • /
    • 2003
  • In the past years, a giant magnetoresistance (GMR) effect found in perovskite-like structured materials has attracted considerable attention among scientists and manufacturers, since, a practical point of view, the capacity of producing magnetic and sensing sensors. In a stream of this interest, further efforts to understand the underlying mechanism that leads to the GMR effect relative to the correlation between transport and magnetic properties, have been extensively devoted. In these cases, spin-glass-like behaviors are ascribed to the frustration of random competing exchange interactions, namely the ferromagnetic double-exchange interaction between Co$\^$3+/ (or Mn$\^$3+/) and Co$\^$4+/(or Mn$\^$4+/) and the antiferromagnetic one like spins. Noticeably, the distinction of spin-glass region from cluster-glass one, involved in the remarkable changes in transport and magnetic properties at a critical value of doping concentration, was observed. Magnetic anomalies in zero-field-cooled (ZFC) magnetization as well as ac magnetic susceptibility below Curie temperature T$\sub$c/ and the charge/orbital fluctuation were also realized. In this work, we present a study of magnetic properties of a deficient manganese perovskites system of La$\sub$0.6/Sr$\sub$x/MnTi$\sub$y/O$_3$, and particularly provide its new magnetic phase diagram.

  • PDF

Packing Density Parameters of Palladium Nanoparticle Monolayers Fabricated via Spin-Coating Electrostatic Self-Assembly

  • An, Minshi;Hong, Jong-Dal;Cho, Kyung-Sang;Lee, Eun-Sung;Choi, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권3호
    • /
    • pp.623-626
    • /
    • 2008
  • Spin-coating electrostatic self-assembly (SCESA) is utilized to fabricate a single layer of carboxylic-acid-coated Pd nanoparticles (NPs) (D??5 nm) on an oppositely charged surface. The packing density of a NP monolayer formed on a rotating solid substrate (3000 rpm) was examined with regards to various parameters, including the particle concentration, the pH, and the ionic strength of the solution. Initially, the packing density grew exponentially with increases in the particle concentration, up to a maximum value (of 8.4 ´ 1011/cm2) at 1.2 wt%. The packing density was also found to increase drastically as the pH decreased and the ionic strength of the solution increased; these trends can be attributed to a reduction in the interparticle repulsions among the NPs in the solution and on the substrate. The best result of this study was achieved in a 1.2 wt% solution at pH 8; under these conditions, an NP monolayer with the highest density (namely, 1.6 ´ 1012/cm2) was obtained.

$Eu_{1-x}Sr_xCoO_{3-y}$계의 비화학량론과 자기적 특성 (Nonstoichiometry and Magnetic Properties of the $Eu_{1-x}Sr_xCoO_{3-y}$ System)

  • 류광현;민지영;여철현
    • 대한화학회지
    • /
    • 제39권7호
    • /
    • pp.508-512
    • /
    • 1995
  • $Eu_{1-x}Sr_xCoO_{3-y}$계에 대한 각 조성의 시료를 1150$^{\circ}C$ 대기압하에서 일정량의 반응혼합물을 가열하여 합성하였고 X-선 회절분석을 통하여 고용체가 합성되었음을 확인하였다. X-선 회절분석 결과 x=0.00과 0.25 조성의 화합물은 뒤틀린 orthoferrite형의 사방정계이고 x=0.50과 0.75는 단순 입방정계이고 x=1.00은 brownmillerite형의 사방정계이다. $Co^{4+}$ 이온의 양(${\tau}$값)은 x=0.50에서 최대가 되고 산소공위는 x값이 증가함에 따라 증가한다. 합성된 화합물에 대한$Co^{4+}$ 이온의 몰비와 산소 비화학량을 결정함으로서 합성된 각 조성의 화합물에 대한 비화학량론적 화학식을 결정하였다. 페롭스카이트 구조의 팔면체자리에 존재하는 $Co^{3+}$ 이온은 온도가 증가함에 따라 낮은 스핀상태에서 높은 스핀상태로의 전이가 일어난다. 이에 따라 자기측정 결과 각 시료는 온도가 상승함에 따라 유효자기모멘트가 증가한다. $EuCoO_{3.00}$의 경우 팔면체자리에 존재하는 $Co^{3+}$ 이온은 산소이온을 매개로 하여 이웃한 $Co^{3+}$ 이온과 반강자성 간접상호작용을 한다. ${\tau}$값이 증가하면 $Co^{3+}-O^2-Co^{4+}$의 강자성 상호작용에 의해 {\theta}_p$의 절대값이 감소하고, 결국 x=0.50에서는 양의 {\theta}_p$값을 갖는다.

  • PDF