• Title/Summary/Keyword: spin echo pulse sequence

Search Result 39, Processing Time 0.028 seconds

A STUDY ON MAGNETIC RESONANCE IMAGING OF THE TEMPOROMANDIBULAR JOINT (악관절에 대한 자기 공명 영상의 연구)

  • Kim Hyung Sik;Kim Jae Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.20 no.2
    • /
    • pp.187-198
    • /
    • 1990
  • Examinations of the temporomandibular joints were performed on a 1.5 Tesla magnetic resonance (MR) system. An MR surface receiver coil 3 inch in diameter was placed on plastic frame, the patient's head being placed in the frame so that the coil was pressed against the temporal region. In taking advantage of the magnetic resonance imaging that has been studied briskly till now, author obtained the images of parasagittal and paracoronal planes about the temporomandibular joint by using MPGR (Multi-Planar Gradient Recalled), GRASS (Gradient Recalled Acquisition in the Steady State), and CSMEMP (Contiguous Slice Multiple Echo, Multi-Planar), that differ from the Spin Echo pulse sequence which the previous authors used. Five subjects with no symptoms of temporomandibular joint pain and dysfunction were studied. The plane images obtained by these methods were compared with those by Spin Echo pulse sequence. The results were as follows: 1. The optimal repetition times (TR) and echo times (TE) for T.M.J. image were; a. 400 msec and 18 msec in PMGR pulse sequence. b. 40 msec and 12 msec in GRASS pulse sequence. c. 700 msec and 30 msec in CSMEMP pulse sequence. d. 500 msec and 20 msec in Spin Echo pulse sequence. 2. When the MPGR pulse sequence was using, T2-weighted image was obtained in very short time. On the image of the paracoronal plane by GRASS pulse sequence, meniscus showed the moderate signal intensity, and the meniscus and its anteromedial, posterolateral attachments were observed definitely with gray color. 4. The signal intensity of Spin Echo pulse sequence was equal to that of CSMEMP pulse sequence, but the image by CSMEMP pulse sequence showed relatively lower level in its resolution.

  • PDF

T2 Relaxographic Mapping using 8-echo CPMG MRI Pulse Sequence

  • E-K. Jeong;Lee, S-H.;J-S. Suh;Y-Y wak;S-A. Shin;Y-K. Kwon;Y. Huh
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.1
    • /
    • pp.7-20
    • /
    • 1997
  • The mapping of the spin-spin relaxation time T2 in pixed-by-pixel was suggested as a quantitative diagnostic tool in medicine. Although the CPMG pulse sequence has been known to be the best pulse sequence for T2 measurement in physics NMR, the supplied pulse sequence by the manufacture of MRI system was able to obtain the maximum of 4 CPMG images. Eight or more images with different echo time TEs are required to construct a reliable T2 map, so that two or more acquisitions were required, which easily took more than 10 minutes. 4-echo CPMG imaging pulse sequence was modified to generate the maximum of 8 MR images with evenly spaced echo time TEs. In human MR imaging, since patients tend to move at least several pixels between the different acquisitions, 8-echo CPMG imaging sequence reduces the acquisition time and may remove any misregistration of each pixel's signal for the fitting T2. The resultant T2 maps using the theoretically simulated images and using the MR images of the human brain suggested that 8 echo CPMG sequence with short echo spacing such as 17∼20 msec can give the reliable T2 map.

  • PDF

A Comparison Study of Signal Intensity of Gadolinium Contrast Media on Fast Spin echo and Ultra Short Time Echo Pulse Sequence at 3T MRI-Phantom Study (3T 자기공명영상 Fast Spin Echo (FSE)와 Ultra Short Time Echo (UTE) 펄스 시퀀스에서 가돌리늄 조영제 희석농도와 신호강도 비교 -팬텀 연구)

  • Lee, Suk-Jun;Yu, Seung-Man
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.253-259
    • /
    • 2015
  • The information of contrast media concentration on target organ is very important to get reduce the side effect and high contrast imaging. We investigated alternation of signal intensity as a function of the modality of Gd-based contrast media on spin echo and ultra short time echo (UTE) of T1 effective pulse sequence at 3T MRI unit. Gadoxetic acid, which is a MRI T1 contrast medium, was used to manufacture an agarose phantom diluted in various molarities, and sterile water and agarose 2% were used as the buffer solution for the dilution. The gold standard T1 calculation was based on coronal single section imaging of the phantom mid-point with 2D Inversion recovery spine-echo pulse sequence MR imaging for testing of phantom accuracy. The 1-2mmol/L and 7mmol/L was shown the maximum signal intensity on spin echo and UTE respectively. We confirm the difference of contrast media concentration which was shown the maximum signal intensity depending on the T1 effective pulse sequence.

Effects of the mascara and eye shadow on theMR image distortion (자기공명영상 왜곡에서 마스카라와 아이섀도의 영향)

  • Lee, Hyun-Yong;Shin, Oun-Jae;Park, Byung-Rae
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • Purpose : To evaluate the degree of the artifact which is caused by the mascara and the eye shadow when acquiring MR images and compare the difference of the image distortion according to the change of various pulse sequence. Material and Method : The popular domestic mascara and eye shadow products were selected from three different companies respectively and divided into two groups mascara (M1, M2, M3 ), eye shadow (E1, E2, E3). Self-designed quadrature type saddle coil which has 4 cm inside diameter, 8 cm length and which is for both Tx and Rx was used. MR image was acquired respectively after applying the mascara to the tape from study 1, the eye shadow to the tape from study 2 and adding the eye shadow to the mascara from study 3. The FSE(fast spin echo), the SE(spin echo), the GE(gradient echo) were used as pulse sequences. The degree of the image distortion which was measured from each sequence was analyzed in quality and quantity. Result : The mascara and the eye shadow caused the artifacts to the MR images partially and induced the image distortion. There was a little difference in terms of the degree of artifact according to the change of pulse sequence. From the study 3 in which the eye shadow was applied to the mascara, on the axial plane image, the width of artifact was 16.73 mm in the GE pulse sequence, 6.64 mm in the SE pulse sequence, and 6.19 mm in the FSE pulse sequence. The degree of the artifact appeared highly in order of the GE, the SE and the FSE. On the sagittal plane image, the length of artifact was 22.84 mm in the GE, 17.81 mm in the SE and it appeared highly with the SE and the FSE technique order. Conclusion : When examining the eyeball and the brain of a woman with the mascara and the eye shadow, we have to consider that the artifact caused by them can have an effect on the image diagnosis. We concluded that it is more suitable for a brain and a eyeball T2 emphasizing image to use the FSE technique than the GE technique.

  • PDF

Distinction of Internal Tissue of Red Ginseng Using Magnetic Resonance Image (MRI을 이용한 홍삼 내부조직 판별)

  • Kim, Chun-Suk;Jung, In-Chan;Kim, Se-Bong
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.332-336
    • /
    • 2008
  • Red ginseng is classified according to outer form and the quality of internal tissue, and red ginseng below third grade can't be sold. Also there are many differences in price according to grade. So if inferior Red ginseng is sold, economic loss and claim take place. This research is done conducted to investigate the possibility of the non-destruction internal tissue investigation of red ginseng. It is observed and compared that MR image after getting MR image agrees with real cutting side in 10-13% water content of red ginseng. The MR image can be obtained to see the internal section of red ginseng with equal condition of time, temperature and slice thickness in spin echo pulse sequence. The MR signal of red ginseng is very weak, because it contains low water density. So it takes about 30 minutes with the measurement of single point image (SPI). But the suitable time to distinguish internal tissues is about 9 seconds in TE (Echo Time) 2.23 ms, TR (Repetition Time) 150ms. The image to discriminate internal tissues in 9 seconds can be obtained when slice thickness is 10 mm with changes of 3, 5, 10 mm. The image obtained after 30 minutes' boiling of 55 degrees has clearer image than that of normal temperature. It is thought that MR signal is stronger through active motion of water particles as temperature increases. With this method MR image of red ginseng can be obtained and characteristics of internal tissues can be observed in such a short time.

The Effect of Number of Echoes and Random Noise on T2 Relaxography : Development of 8-Echo CPMG (에코의 개수와 임의 잡음이 T2 이완영상의 구성에 미치는 영향연구 : 8에코 CPMG영상화 펄스열의 개발)

  • 정은기
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.67-72
    • /
    • 1998
  • The mapping of the spin-spin relaxation time T2 in pixel-by-pixel was suggested as a quantitative diagnostic tool in medicine. although the CPMG pulse sequence has been known to be the best pulse sequence for T2 measurement in physics NMR, the supplied pulse sequence by the manufacture of MRI system was able to obtain the maximum of 4 CPMG images. Eight or more images with different echo time TEs are required to construct a reliable T2 map, so that two or more acquisitions were required, which easily took more than 10 minutes. 4-echo CPMG imaging pulse sequence was modified to generate the maximum of 8 MR images with evenly spaced echo time TEs. In human MR imaging, since patients tend to move at least several pixels between the different acquisitions, 8-echo CPMG imaging sequence reduces the acquisition time and may remove any mis-regitration of each pixels signal for the fitting of T2. The resultant T2 maps using the theoretically simulated images and using the MR images of the human brain suggested that 8 echo CPMG sequence with short echo spacing such as 17-20 msec can give the reliable T2 map.

  • PDF

Multi-slice Multi-echo Pulsed-gradient Spin-echo (MePGSE) Sequence for Diffusion Tensor Imaging MRI: A Preliminary Result (일회 영상으로 확산텐서 자기공명영상을 얻을 수 있는 다편-다에코 펄스 경사자장 스핀에코(MePGSE) 시퀀스의 초기 결과)

  • Jahng, Geon-Ho;Pickup, Stephen
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.65-72
    • /
    • 2007
  • An echo planar imaging (EPI)-based spin-echo sequence Is often used to obtain diffusion tensor imaging (DTI) data on most of the clinical MRI systems, However, this sequence is confounded with the susceptibility artifacts, especially on the temporal lobe in the human brain. Therefore, the objective of this study was to design a pulse sequence that relatively immunizes the susceptibility artifacts, but can map diffusion tensor components in a single-shot mode. A multi-slice multi-echo pulsed-gradient spin-echo (MePGSE) sequence with eight echoes wasdeveloped with selective refocusing pulses for all slices to map the full tensor. The first seven echoes in the train were diffusion-weighted allowing for the observation of diffusion in several different directions in a single experiment and the last echo was for crusher of the residual magnetization. All components of diffusion tensor were measured by a single shot experiment. The sequence was applied in diffusive phantoms. The preliminary experimental verification of the sequence was illustrated by measuring the apparent diffusion coefficient (ADC) for tap water and by measuring diffusion tensor components for watermelon. The ADC values in the series of the water phantom were reliable. The MePGSE sequence, therefore, may be useful in human brain studies.

  • PDF

T1-, T2-weighted, and FLAIR Imaging: Clinical Application (T1, T2강조영상, FLAIR영상의 임상 적용)

  • Kim, Jae-Hyoung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • T1-, and T2-weighted imagings and FLAIR (fluid attenuated inversion recovery) imaging are fundamental imaging methods in the brain. T1-weighted imaging is a spin-echo sequence with short TR and short TE and produces the tissue contrast by different T1 relaxation times. In other words, short TR maximizes the difference of the longituidinal magnetization recovery between the tissues. T2-weighted imaging is a spin-echo sequence with long TR and long TE and produces the tissue contrast by different T2 relaxation times. Long TE maximizes the difference of the transverse magnetization decay between the tissues. FLAIR is an inversion recovery sequence using 180 degree inversion pulse. 2500 msec of inversion time is applied to suppress the CSF signal.

  • PDF

A Unified Gradient Shape on the Slice-Selection Axis for Flow Compensation (스핀에코 펄스 시퀀스의 슬라이스 선택방향에서 혈류 보상을 위한 통일 경사자장법 연구)

  • Pickup, Stephen;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.70-80
    • /
    • 2006
  • Spin echo gradient moment nulling pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. A new technique was introduced for flow compensation that minimized echo time and effectively suppresses unwanted echoes on the slice selection gradient axis in spin echo sequences. A unified gradient shape was used in all orders of flow compensation up to the third order. A dual-purpose gradient was applied for flow compensation and to reduce unwanted artifacts. The sequences were used to generate images of phantoms and/or human brains. This technique was especially good at reducing eddy currents and artifacts related to imperfection of the refocusing pulse. The developed sequences were found to have shorter echo times and better flow compensation in through-plane flow than those of the previous models that were used by other investigators.

  • PDF

Elucidation of Central Line Refocusing in Quadrupolar Echo Formation

  • Han, Duk-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.1
    • /
    • pp.27-35
    • /
    • 1999
  • Quadrupolar interaction is a strong line broadening agent for nuclei of half-integer spin except the central line. The two-pulse quadrupolar echo technique is widely used, which refocuses the quadrupolar broadening. Echo formation is due to the cancellation of quadrupolar broadening effect by the applied two pulses. Since the central line is not quadrupolar broadened, it should not be involved in the echo formation. However, the central line peak always appears in experiments. This is explained qualitatively here by close examination on the time development of individual coherence. This explanation is used to predict the number of echoes that will be formed with 2 pulse sequence for nuclei of I=3/2, 5/2, 7/2, 9/2 with ease.

  • PDF