• 제목/요약/키워드: spin density wave

검색결과 34건 처리시간 0.022초

철 초전도체에서 스핀 밀도 파와 $\pi$ 위상 차 초전도성의 상전이 그림 (Phase Diagram of Spin Density Wave and $\pi$ Phase Shifted Superconductivity in the Fe Pnictide Superconductors)

  • 이나영;최한용
    • Progress in Superconductivity
    • /
    • 제11권2호
    • /
    • pp.112-117
    • /
    • 2010
  • We examine phase transition of the spin density wave and $\pi$ phase shifted superconductivity in the Fe pnictide superconductors. The phase diagram is described in the plane of the temperature T and the doping x with the combination of Ginzburg-Landau expansion of the free energy near the multi-critical temperature $T_c$ and the self-consistent numerical iterations of the gap equations. The phase separation or coexistence is determined by computing the 4-th order terms of the free energy which is confirmed by the numerical calculations. We can show the phase coexistence when the spin density wave is incommensurate. And the first order phase transition is observed near the boundary between commensurate and incommensurate spin density wave.

Factors Affecting the Magnitude of the Metal-Insulator Transition Temperature in AMo4O6 (A=K, Sn)

  • Jung, Dong-Woon;Choi, Kwang-Sik;Kim, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권7호
    • /
    • pp.959-964
    • /
    • 2004
  • A low-dimensional metal frequently exhibits a metal-insulator transition through a charge-density-wave (CDW) or a spin-density-wave (SDW) which accompany it's structural changes. The transition temperature is thought to be determined by the amount of energy produced during the transition process and the softness of the original structure. $AMo_4O_6$ (A=K, Sn) are known to be quasi-one dimensional metals which exhibit metalinsulator transitions. The difference of the transition temperatures between $KMo_4O_6$ and $SnMo_4O_6$ (A=K, Sn) is examined by investigating their electronic and structural properties. Fermi surface nesting area and the lattice softness are the governing factors to determine the metal-insulator transition temperature in $AMo_4O_6$ compounds.

A first-principles theoretical investigation of the structural, electronic and magnetic properties of cubic thorium carbonitrides ThCxN(1-x)

  • Siddique, Muhammad;Rahman, Amin Ur;Iqbal, Azmat;Azam, Sikander
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1373-1380
    • /
    • 2019
  • Besides promising implications as fertile nuclear materials, thorium carbonitrides are of great interest owing to their peculiar physical and chemical properties, such as high density, high melting point, good thermal conductivity. This paper reports first-principles simulation results on the structural, electronic and magnetic properties of cubic thorium carbonitrides $ThC_xN_{(1-x)}$ (X = 0.03125, 0.0625, 0.09375, 0.125, 0.15625) employing formalism of density-functional-theory. For the simulation of physical properties, we incorporated full-potential linearized augmented plane-wave (FPLAPW) method while the exchange-correlation potential terms in Kohn-Sham Equation (KSE) are treated within Generalized-Gradient-Approximation (GGA) in conjunction with Perdew-Bruke-Ernzerhof (PBE) correction. The structural parameters were calculated by fitting total energy into the Murnaghan's equation of state. The lattice constants, bulk moduli, total energy, electronic band structure and spin magnetic moments of the compounds show dependence on the C/N concentration ratio. The electronic and magnetic properties have revealed non-magnetic but metallic character of the compounds. The main contribution to density of states at the Fermi level stems from the comparable spectral intensity of Th (6d+5f) and (C+N) 2p states. In comparison with spin magnetic moments of ThSb and ThBi calculated earlier with LDA+U approach, we observed an enhancement in the spin magnetic moments after carbon-doping into ThN monopnictide.

Correlation between Structures and Magnetism in Iron: Ferromagnetism and Antiferromagnetism

  • Lee, Dong-Kook;Hong, Soon-Cheol
    • Journal of Magnetics
    • /
    • 제12권2호
    • /
    • pp.68-71
    • /
    • 2007
  • Even a pure bulk Fe has a complicated magnetic phase and its magnetism is still needed to be clarified. In this study we investigated the magnetism of bcc and fcc bulk Fe with total energy calculations as functions of atomic volume. The full-potential linearized augmented plane wave method was adopted within a generalized gradient approximation. The ground state of bulk Fe is confirmed to be of ferromagnetic (FM) bcc. For fcc structured Fe an antiferromagnetic (AFM) state is more stable compared to FM states which exist as low spin and high spin states. The stable AFM states were found to accompany a tetragonal distortion, while the FM states remained in a cubic symmetry. At an expanded lattice constant a high spin FM state was calculated to be able to be stabilized with significant enhanced magnetic moment compared to the value of the ground state, bcc FM.

Periodicity Dependence of Magnetic Anisotropy and Magnetization of FeCo Heterostructure

  • Kim, Miyoung
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.6-11
    • /
    • 2016
  • The magnetic anisotropy energy (MAE) and the saturation magnetization $B_s$ of (110) $Fe_nCo_n$ heterostructures with n = 1, 2, and 3 are investigated in first-principles within the density functional theory by using the precise full-potential linearized augmented plane wave (FLAPW) method. We compare the results employing two different exchange correlation potentials, that is, the local density approximation (LDA) and the generalized gradient approximation (GGA), and include the spin-orbit coupling interaction of the valence states in the second variational way. The MAE is found to be enhanced significantly compared to those of bulk Fe and Co and the magnetic easy axis is in-plane in agreement with experiment. Also the MAE exhibits the in-plane angle dependence with a two-fold anisotropy showing that the $[1{\overline{I}}0]$ direction is the most favored spin direction. We found that as the periodicity increases, (i) the saturation magnetization $B_s$ decreases due to the reduced magnetic moment of Fe far from the interface, (ii) the strength of in-plane preference of spin direction increases yielding enhancement of MAE, and (iii) the volume anisotropy coefficient decreases because the volume increase outdo the MAE enhancement.

Magnetic Properties of Carbon Chains Doped with 4d Transition Metals

  • Jang, Y.R.;Lee, J.I.
    • Journal of Magnetics
    • /
    • 제13권1호
    • /
    • pp.7-10
    • /
    • 2008
  • The structural and magnetic properties of functionalized carbon chains doped with 4d transition metals, such as Ru, Rh, and Pd, were investigated using the full-potential linearized augmented plane wave (FLAPW) method. The carbon nanowire doped with Ru exhibited a ferromagnetic ground state with a sizable magnetic moment, while those doped with Rh and Pd had nonmagnetic ground states. For the Ru-doped chain, the density of states at the Fermi level showed large spin polarization, which suggests that the doped nanowire could be used for spintronic applications.

W(110)위에 성장한 Fe 웃층의 전자 및 자기적 성질 (The Electronic and Magnetic Properties of Fe Overlayers on W(110))

  • 홍순철;이재일
    • 한국자기학회지
    • /
    • 제1권2호
    • /
    • pp.1-8
    • /
    • 1991
  • 비자성 천이금속인 W의 (110)표면 위에 성장한 강자성 Fe 원자층의 전자적 성질 및 자기적 성질을 국소밀도근사 범위 내의 Full Potential Linearized Augmented Plane Wave (FLAPW) 방법을 이용하여 계산하였다. 이 계산에서 W, Fe의 층간 거리는 bull값을 이용하였으며 표면이완 및 계면이완은 고려하지 않았다. 전하밀도, 스핀밀도, 자기 모멘트, 접촉 초미세장, 2차원 띠구조, 각층의 상태밀도 등의 계산결과를 제시하였다. Fe 웃층이 1층인 경우, Fe의 자기모멘트는 2.56 ${\mu}_B$로 bulk에 비해 16% 증가하였고, Fe 웃층이 2층인 경우 표면 및 계면을 이루는 Fe층의 자기 모멘트는 각각 2.90과 2.30 ${\mu}_B$로 평균 자기모멘트는 bulk에 비해 약 18% 증가한 것으로 나타났다. Fe 층수가 1층일 때 자기초미세장의 크기는 2층일 때와는 큰 차이를 보여주고 있다. 깨끗한 Fe(110)의 결과와 비교함으로써 W과의 띠혼합 효과와 격자상수 확장 효과에 대해 논의하고 실험결과의 계산결과를 비교 검토하여 보았다.

  • PDF

$(TMTSF)_2BF_4$의 압력-온도 상태도 연구 (Pressure-Temperature Phase Diagram of $(TMTSF)_2BF_4$)

  • 조연정
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.24-29
    • /
    • 2012
  • $(TMTSF)_2BF_4$ containing non-centrosymmetric anions is well known to exhibit a metal insulator transition around 37 K by ordering of the anions with a $q_2$=(1/2, 1/2, 1/2) wave vector. We established pressure-temperature phase diagram of the $(TMTSF)_2BF_4$ compound and showed that it can belong to the general phase diagram of the $(TMTSF)_2X$ family. Application of hydrostatic pressure decreases the anion ordering transition temperature and the superconducting state is finally stabilized below 3.77 K under 7.7 kbar. Magnetoresistance measurement on the $(TMTSF)_2BF_4$ under 7.8 kbar is performed but neither the field-induced spin-density-wave state nor the rapid oscillation is observed up to 9 T.

Mechanical and thermodynamic stability, structural, electronics and magnetic properties of new ternary thorium-phosphide silicides ThSixP1-x: First-principles investigation and prospects for clean nuclear energy applications

  • Siddique, Muhammad;Iqbal, Azmat;Rahman, Amin Ur;Azam, Sikander;Zada, Zeshan;Talat, Nazia
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.592-602
    • /
    • 2021
  • Thorium compounds have attracted immense scientific and technological attention with regard to both fundamental and practical implications, owing to unique chemical and physical properties like high melting point, high density and thermal conductivity. Hereby, we investigate the mechanical and thermodynamic stability and report on the structural, electronic and magnetic properties of new silicon-doped cubic ternary thorium phosphides ThSixP1-x (x = 0, 0.25, 0.5, 0.75 and 1). The first-principles density functional theory procedure was adopted within full-potential linearized augmented plane wave (FP-LAPW) method. The exchange and correlation potential terms were treated within Generalized-Gradient-Approximation functional modified by Perdew-Burke-Ernzerrhof parameterizations. The proposed compounds showed mechanical and thermodynamic stable structure and hence can be synthesized experimentally. The calculated lattice parameters, bulk modulus, total energy, density of states, electronic band structure and spin magnetic moments of the compounds revealed considerable correlation to the Si substitution for P and the relative Si/P doping concentration. The electronic and magnetic properties of the doped compounds rendered them non-magnetic but metallic in nature. The main orbital contribution to the Fermi level arises from the hybridization of Th(6d+5f) and (Si+P)3p states. Reported results may have potential implications with regard to both fundamental point of view and technological prospects such as fuel materials for clean nuclear energy.