• Title/Summary/Keyword: spiking neural networks

Search Result 23, Processing Time 0.025 seconds

Automatic Generation Tool for Open Platform-compatible Intelligent IoT Components (오픈 플랫폼 호환 지능형 IoT 컴포넌트 자동 생성 도구)

  • Seoyeon Kim;Jinman Jung;Bongjae Kim;Young-Sun Yoon;Joonhyouk Jang
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.32-39
    • /
    • 2022
  • As IoT applications that provide AI services increase, various hardware and software that support autonomous learning and inference are being developed. However, as the characteristics and constraints of each hardware increase difficulties in developing IoT applications, the development of an integrated platform is required. In this paper, we propose a tool for automatically generating components based on artificial neural networks and spiking neural networks as well as IoT technologies to be compatible with open platforms. The proposed component automatic generation tool supports the creation of components considering the characteristics of various hardware devices through the virtual component layer of IoT and AI and enables automatic application to open platforms.

Model Optimization for Supporting Spiking Neural Networks on FPGA Hardware (FPGA상에서 스파이킹 뉴럴 네트워크 지원을 위한 모델 최적화)

  • Kim, Seoyeon;Yun, Young-Sun;Hong, Jiman;Kim, Bongjae;Lee, Keon Myung;Jung, Jinman
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.70-76
    • /
    • 2022
  • IoT application development using a cloud server causes problems such as data transmission and reception delay, network traffic, and cost for real-time processing support in network connected hardware. To solve this problem, edge cloud-based platforms can use neuromorphic hardware to enable fast data transfer. In this paper, we propose a model optimization method for supporting spiking neural networks on FPGA hardware. We focused on auto-adjusting network model parameters optimized for neuromorphic hardware. The proposed method performs optimization to show higher performance based on user requirements for accuracy. As a result of performance analysis, it satisfies all requirements of accuracy and showed higher performance in terms of expected execution time, unlike the naive method supported by the existing open source framework.

Trends in Neuromorphic Photonics Technology (뉴로모픽 포토닉스 기술 동향)

  • Kwon, Y.H.;Kim, K.S.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.34-41
    • /
    • 2020
  • The existing Von Neumann architecture places limits to data processing in AI, a booming technology. To address this issue, research is being conducted on computing architectures and artificial neural networks that simulate neurons and synapses, which are the hardware of the human brain. With high-speed, high-throughput data communication infrastructures, photonic solutions today are a mature industrial reality. In particular, due to the recent outstanding achievements of artificial neural networks, there is considerable interest in improving their speed and energy efficiency by exploiting photonic-based neuromorphic hardware instead of electronic-based hardware. This paper covers recent photonic neuromorphic studies and a classification of existing solutions (categorized into multilayer perceptrons, convolutional neural networks, spiking neural networks, and reservoir computing).

QoS-Aware Optimal SNN Model Parameter Generation Method in Neuromorphic Environment (뉴로모픽 환경에서 QoS를 고려한 최적의 SNN 모델 파라미터 생성 기법)

  • Seoyeon Kim;Bongjae Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.19-26
    • /
    • 2023
  • IoT edge services utilizing neuromorphic hardware architectures are suitable for autonomous IoT applications as they perform intelligent processing on the device itself. However, spiking neural networks applied to neuromorphic hardware are difficult for IoT developers to comprehend due to their complex structures and various hyper-parameters. In this paper, we propose a method for generating spiking neural network (SNN) models that satisfy user performance requirements while considering the constraints of neuromorphic hardware. Our proposed method utilizes previously trained models from pre-processed data to find optimal SNN model parameters from profiling data. Comparing our method to a naive search method, both methods satisfy user requirements, but our proposed method shows better performance in terms of runtime. Additionally, even if the constraints of new hardware are not clearly known, the proposed method can provide high scalability by utilizing the profiled data of the hardware.

Trend of AI Neuromorphic Semiconductor Technology (인공지능 뉴로모픽 반도체 기술 동향)

  • Oh, K.I.;Kim, S.E.;Bae, Y.H.;Park, K.H.;Kwon, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.76-84
    • /
    • 2020
  • Neuromorphic hardware refers to brain-inspired computers or components that model an artificial neural network comprising densely connected parallel neurons and synapses. The major element in the widespread deployment of neural networks in embedded devices are efficient architecture for neuromorphic hardware with regard to performance, power consumption, and chip area. Spiking neural networks (SiNNs) are brain-inspired in which the communication among neurons is modeled in the form of spikes. Owing to brainlike operating modes, SNNs can be power efficient. However, issues still exist with research and actual application of SNNs. In this issue, we focus on the technology development cases and market trends of two typical tracks, which are listed above, from the point of view of artificial intelligence neuromorphic circuits and subsequently describe their future development prospects.

Performance Analysis of Speech Recognition Model based on Neuromorphic Architecture of Speech Data Preprocessing Technique (음성 데이터 전처리 기법에 따른 뉴로모픽 아키텍처 기반 음성 인식 모델의 성능 분석)

  • Cho, Jinsung;Kim, Bongjae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.69-74
    • /
    • 2022
  • SNN (Spiking Neural Network) operating in neuromorphic architecture was created by mimicking human neural networks. Neuromorphic computing based on neuromorphic architecture requires relatively lower power than typical deep learning techniques based on GPUs. For this reason, research to support various artificial intelligence models using neuromorphic architecture is actively taking place. This paper conducted a performance analysis of the speech recognition model based on neuromorphic architecture according to the speech data preprocessing technique. As a result of the experiment, it showed up to 84% of speech recognition accuracy performance when preprocessing speech data using the Fourier transform. Therefore, it was confirmed that the speech recognition service based on the neuromorphic architecture can be effectively utilized.

Brain-Inspired Artificial Intelligence (브레인 모사 인공지능 기술)

  • Kim, C.H.;Lee, J.H.;Lee, S.Y.;Woo, Y.C.;Baek, O.K.;Won, H.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.106-118
    • /
    • 2021
  • The field of brain science (or neuroscience in a broader sense) has inspired researchers in artificial intelligence (AI) for a long time. The outcomes of neuroscience such as Hebb's rule had profound effects on the early AI models, and the models have developed to become the current state-of-the-art artificial neural networks. However, the recent progress in AI led by deep learning architectures is mainly due to elaborate mathematical methods and the rapid growth of computing power rather than neuroscientific inspiration. Meanwhile, major limitations such as opacity, lack of common sense, narrowness, and brittleness have not been thoroughly resolved. To address those problems, many AI researchers turn their attention to neuroscience to get insights and inspirations again. Biologically plausible neural networks, spiking neural networks, and connectome-based networks exemplify such neuroscience-inspired approaches. In addition, the more recent field of brain network analysis is unveiling complex brain mechanisms by handling the brain as dynamic graph models. We argue that the progress toward the human-level AI, which is the goal of AI, can be accelerated by leveraging the novel findings of the human brain network.

Comparison of Artificial Neural Networks for Low-Power ECG-Classification System

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Electrocardiogram (ECG) classification has become an essential task of modern day wearable devices, and can be used to detect cardiovascular diseases. State-of-the-art Artificial Intelligence (AI)-based ECG classifiers have been designed using various artificial neural networks (ANNs). Despite their high accuracy, ANNs require significant computational resources and power. Herein, three different ANNs have been compared: multilayer perceptron (MLP), convolutional neural network (CNN), and spiking neural network (SNN) only for the ECG classification. The ANN model has been developed in Python and Theano, trained on a central processing unit (CPU) platform, and deployed on a PYNQ-Z2 FPGA board to validate the model using a Jupyter notebook. Meanwhile, the hardware accelerator is designed with Overlay, which is a hardware library on PYNQ. For classification, the MIT-BIH dataset obtained from the Physionet library is used. The resulting ANN system can accurately classify four ECG types: normal, atrial premature contraction, left bundle branch block, and premature ventricular contraction. The performance of the ECG classifier models is evaluated based on accuracy and power. Among the three AI algorithms, the SNN requires the lowest power consumption of 0.226 W on-chip, followed by MLP (1.677 W), and CNN (2.266 W). However, the highest accuracy is achieved by the CNN (95%), followed by MLP (76%) and SNN (90%).

Implementation of Autonomous IoT Integrated Development Environment based on AI Component Abstract Model (AI 컴포넌트 추상화 모델 기반 자율형 IoT 통합개발환경 구현)

  • Kim, Seoyeon;Yun, Young-Sun;Eun, Seong-Bae;Cha, Sin;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.71-77
    • /
    • 2021
  • Recently, there is a demand for efficient program development of an IoT application support frameworks considering heterogeneous hardware characteristics. In addition, the scope of hardware support is expanding with the development of neuromorphic architecture that mimics the human brain to learn on their own and enables autonomous computing. However, most existing IoT IDE(Integrated Development Environment), it is difficult to support AI(Artificial Intelligence) or to support services combined with various hardware such as neuromorphic architectures. In this paper, we design an AI component abstract model that supports the second-generation ANN(Artificial Neural Network) and the third-generation SNN(Spiking Neural Network), and implemented an autonomous IoT IDE based on the proposed model. IoT developers can automatically create AI components through the proposed technique without knowledge of AI and SNN. The proposed technique is flexible in code conversion according to runtime, so development productivity is high. Through experimentation of the proposed method, it was confirmed that the conversion delay time due to the VCL(Virtual Component Layer) may occur, but the difference is not significant.

Reduction of Inference time in Neuromorphic Based Platform for IoT Computing Environments (IoT 컴퓨팅 환경을 위한 뉴로모픽 기반 플랫폼의 추론시간 단축)

  • Kim, Jaeseop;Lee, Seungyeon;Hong, Jiman
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • The neuromorphic architecture uses a spiking neural network (SNN) model to derive more accurate results as more spike values are accumulated through inference experiments. When the inference result converges to a specific value, even if the inference experiment is further performed, the change in the result is smaller and power consumption may increase. In particular, in an AI-based IoT environment, power consumption can be a big problem. Therefore, in this paper, we propose a technique to reduce the power consumption of AI-based IoT by reducing the inference time by adjusting the inference image exposure time in the neuromorphic architecture environment. The proposed technique calculates the next inferred image exposure time by reflecting the change in inference accuracy. In addition, the rate of reflection of the change in inference accuracy can be adjusted with a coefficient value, and an optimal coefficient value is found through a comparison experiment of various coefficient values. In the proposed technique, the inference image exposure time corresponding to the target accuracy is greater than that of the linear technique, but the overall power consumption is less than that of the linear technique. As a result of measuring and evaluating the performance of the proposed method, it is confirmed that the inference experiment applying the proposed method can reduce the final exposure time by about 90% compared to the inference experiment applying the linear method.