• Title/Summary/Keyword: spiA

Search Result 402, Processing Time 0.035 seconds

Applying 6 sigma techniques in CMMI based software process improvement (CMMI 기반의 프로세스 개선을 위한 6시그마 활용방안)

  • Kim Han-Saem;Han Hyuk-Soo
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.415-424
    • /
    • 2006
  • There are increasing numbers of foreign and domestic organizations that are using CMM/CMMI to establish their processes and keep improving them. CMMI and IDEAL models of SEI provide the best practices of processes and guide the organization using them based on processes maturity levels. However, they do not deal with their tools or methods that describe how to implement the processes in the organization. Therefore, in this paper, we developed a method in which various tools and statistical methodology of 6 sigma are applied to identify the process areas to be improved, to extract problems in those areas and to prioritize them. We expect this paper can contribute to the organizations that are searching for practical way of implementing CMMI based software process improvement and of identifying improvement items systematically. Also this method will be used to understand the result of improvement activities quantitatively.

The Effects of Droughts and Public Investments in Irrigation Facilities on Rice Yields in Korea (가뭄과 생산기반 정비사업이 쌀 생산성에 미치는 영향)

  • Sung, Jae-hoon;Chae, Kwang-seok;KIM, Dae-Eui
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.293-303
    • /
    • 2017
  • The purpose of this study is to measure the effects of droughts and public investments in irrigation facilities on rice production. We estimated the effects of droughts and the fraction of irrigated paddy fields with irrigation facilities on rice yields through a panel regression model. The results showed that the effect of drought on rice yield was negative but modest. Also, we found that increases in the ratio of irrigated paddy fields to total paddy fields by 1% enhance rice yields by 0.025-0.035%. However, the ratio of irrigated paddy fields to total paddy fields has insignificant effects on reducing harmful droughts effects regardless of the conditions of irrigated paddy fields.

Comparative Analysis of the 2022 Southern Agricultural Drought Using Evapotranspiration-Based ESI and EDDI (증발산 기반 ESI와 EDDI를 활용한 2022년 남부지역의 농업 가뭄 분석)

  • Park, Gwang-Su;Nam, Won-Ho;Lee, Hee-Jin;Sur, Chanyang;Ha, Tae-Hyun;Jo, Young-Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.3
    • /
    • pp.25-37
    • /
    • 2024
  • Global warming-induced drought inflicts significant socio-economic and environmental damage. In Korea, the persistent drought in the southern region since 2022 has severely affected water supplies, agriculture, forests, and ecosystems due to uneven precipitation distribution. To effectively prepare for and mitigate such impacts, it is imperative to develop proactive measures supported by early monitoring systems. In this study, we analyzed the spatiotemporal changes of multiple evapotranspiration-based drought indices, focusing on the flash drought event in the southern region in 2022. The indices included the Evaporative Demand Drought Index (EDDI), Standardized Precipitation Evapotranspiration Index (SPEI) considering precipitation and temperature, and the Evaporative Stress Index (ESI) based on satellite images. The Standardized Precipitation Index (SPI) and SPEI indices utilized temperature and precipitation data from meteorological observation stations, while the ESI index was based on satellite image data provided by the MODIS sensor on the Terra satellite. Additionally, we utilized the Evaporative Demand Drought Index (EDDI) provided by the North Oceanic and Atmospheric Administration (NOAA) as a supplementary index to ESI, enabling us to perform more effective drought monitoring. We compared the degree and extent of drought in the southern region through four drought indices, and analyzed the causes and effects of drought from various perspectives. Findings indicate that the ESI is more sensitive in detecting the timing and scope of drought, aligning closely with observed drought trends.

Water shortage assessment by applying future climate change for boryeong dam using SWAT (SWAT을 이용한 기후변화에 따른 보령댐의 물부족 평가)

  • Kim, Won Jin;Jung, Chung Gil;Kim, Jin Uk;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1195-1205
    • /
    • 2018
  • In the study, the water shortage of Boryeong Dam watershed ($163.6km^2$) was evaluated under future climate change scenario. The Soil and Water Assessment Tool (SWAT) was used considering future dam release derived from multiple linear regression (MLR) analysis. The SWAT was calibrated and verified by using daily observed dam inflow and storage for 12 years (2005 to 2016) with average Nash-Sutcliffe efficiency of 0.59 and 0.91 respectively. The monthly dam release by 12 years MLR showed coefficient of determination ($R^2$) of above 0.57. Among the 27 RCP 4.5 scenarios and 26 RCP 8.5 scenarios of GCM (General Circulation Model), the RCP 8.5 BCC-CSM1-1-M scenario was selected as future extreme drought scenario by analyzing SPI severity, duration, and the longest dry period. The scenario showed -23.6% change of yearly dam storage, and big changes of -34.0% and -24.1% for spring and winter dam storage during 2037~2047 period comparing with 2007~2016 period. Based on Runs theory of analyzing severity and magnitude, the future frequency of 5 to 10 years increased from 3 in 2007~2016 to 5 in 2037~2046 period. When considering the future shortened water shortage return period and the big decreases of winter and spring dam storage, a new dam operation rule from autumn is necessary for future possible water shortage condition.

Assessment of CMIP5 GCMs for future extreme drought analysis (미래 극한 가뭄 전망을 위한 CMIP5 GCMs 평가)

  • Hong, Hyun-Pyo;Park, Seo-Yeon;Kim, Tae-Woong;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.617-627
    • /
    • 2018
  • In this study, CMIP5 GCMs rainfall data (2011~2099) based on RCP scenarios were used to analyze the extreme drought evaluation for the future period. For prospective drought assessment, historical observations were used based on the Automated Surface Observing System (ASOS) data (1976~2010) of the Korea Meteorological Administration. Through the analysis of various indicators, such as average annual rainfall, rainy days, drought spell, and average drought severity was carried out for the drought evaluation of the five major river basins (Han river, Nakdong river, Geum river, Sumjin river, and Youngsan river) over the Korean peninsula. The GCMs that predicted the most severe future droughts are CMCC-CMS, IPSL-CM5A-LR and IPSL-CM5A-MR. Moderate future droughts were predicted from HadGEM2-CC, CMCC-CM and HadGEM2-ES. GCMs with relatively weak future drought forecasts were selected as CESM1-CAM5, MIROC-ESM-CHEM and CanESM2. The results of this study might be used as a fundamental data to choose a reasonable climate change scenario in future extreme drought evaluation.

Analysis and Validation of Geo-environmental Susceptibility for Landslide Occurrences Using Frequency Ratio and Evidential Belief Function - A Case for Landslides in Chuncheon in 2013 - (Frequency Ratio와 Evidential Belief Function을 활용한 산사태 유발에 대한 환경지리적 민감성 분석과 검증 - 2013년 춘천 산사태를 중심으로 -)

  • Lee, Won Young;Sung, Hyo Hyun;Ahn, Sejin;Park, Seon Ki
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.61-89
    • /
    • 2020
  • The objective of this study is to characterize landslide susceptibility depending on various geo-environmental variables as well as to compare the Frequency Ratio (FR) and Evidential Belief Function (EBF) methods for landslide susceptibility analysis of rainfall-induced landslides. In 2013, a total of 259 landslides occurred in Chuncheon, Gangwon Province, South Korea, due to heavy rainfall events with a total cumulative rainfall of 296~721mm in 106~231 hours duration. Landslides data were mapped with better accuracy using the geographic information system (ArcGIS 10.6 version) based on the historic landslide records in Chuncheon from the National Disaster Management System (NDMS), the 2013 landslide investigation report, orthographic images, and aerial photographs. Then the landslides were randomly split into a testing dataset (70%; 181 landslides) and validation dataset (30%; 78 landslides). First, geo-environmental variables were analyzed by using FR and EBF functions for the full data. The most significant factors related to landslides were altitude (100~200m), slope (15~25°), concave plan curvature, high SPI, young timber age, loose timber density, small timber diameter, artificial forests, coniferous forests, soil depth (50~100cm), very well-drained area, sandy loam soil and so on. Second, the landslide susceptibility index was calculated by using selected geo-environmental variables. The model fit and prediction performance were evaluated using the Receiver Operating Characteristic (ROC) curve and the Area Under Curve (AUC) methods. The AUC values of both model fit and prediction performance were 80.5% and 76.3% for FR and 76.6% and 74.9% for EBF respectively. However, the landslide susceptibility index, with classes of 'very high' and 'high', was detected by 73.1% of landslides in the EBF model rather than the FR model (66.7%). Therefore, the EBF can be a promising method for spatial prediction of landslide occurrence, while the FR is still a powerful method for the landslide susceptibility mapping.

Percentile Approach of Drought Severity Classification in Evaporative Stress Index for South Korea (Evaporative Stress Index (ESI)의 국내 가뭄 심도 분류 기준 제시)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Taegon;Park, Jong-Hwan;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.63-73
    • /
    • 2020
  • Drought is considered as a devastating hazard that causes serious agricultural, ecological and socio-economic impacts worldwide. Fundamentally, the drought can be defined as temporarily different levels of inadequate precipitation, soil moisture, and water supply relative to the long-term average conditions. From no unified definition of droughts, droughts have been divided into different severity level, i.e., moderate drought, severe drought, extreme drought and exceptional drought. The drought severity classification defined the ranges for each indicator for each dryness level. Because the ranges of the various indicators often don't coincide, the final drought category tends to be based on what the majority of the indicators show and on local observations. Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used as a index of the droughts occurring rapidly in a short period of time from studies showing a more sensitive and fast response to drought compared to Standardized Precipitation Index (SPI), and Palmer Drought Severity Index (PDSI). However, ESI is difficult to provide an objective drought assessment because it does not have clear drought severity classification criteria. In this study, U.S. Drought Monitor (USDM), the standard for drought determination used in the United States, was applied to ESI, and the Percentile method was used to classify drought categories by severity. Regarding the actual 2017 drought event in South Korea, we compare the spatial distribution of drought area and understand the USDM-based ESI by comparing the results of Standardized Groundwater level Index (SGI) and drought impact information. These results demonstrated that the USDM-based ESI could be an effective tool to provide objective drought conditions to inform management decisions for drought policy.

ROC Analysis of Topographic Factors in Flood Vulnerable Area considering Surface Runoff Characteristics (지표 유출 특성을 고려한 홍수취약지역 지형학적 인자의 ROC 분석)

  • Lee, Jae Yeong;Kim, Ji-Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.327-335
    • /
    • 2020
  • The method of selecting an existing flood hazard area via a numerical model requires considerable time and effort. In this regard, this study proposes a method for selecting flood vulnerable areas through topographic analysis based on a surface runoff mechanism to reduce the time and effort required. Flood vulnerable areas based on runoff mechanisms refer to those areas that are advantageous in terms of the flow accumulation characteristics of rainfall-runoff water at the surface, and they generally include lowlands, mild slopes, and rivers. For the analysis, a digital topographic map of the target area (Seoul) was employed. In addition, in the topographic analysis, eight topographic factors were considered, namely, the elevation, slope, profile and plan curvature, topographic wetness index (TWI), stream power index, and the distances from rivers and manholes. Moreover, receiver operating characteristic analysis was conducted between the topographic factors and actual inundation trace data. The results revealed that four topographic factors, namely, elevation, slope, TWI, and distance from manholes, explained the flooded area well. Thus, when a flood vulnerable area is selected, the prioritization method for various factors as proposed in this study can simplify the topographical analytical factors that contribute to flooding.

A Study on T5 28W Fluorescent Lamp Ballast Using a Piezoelectric Transformer and One-chip Microcontroller (One Chip Microcontroller와 압전변압기를 이용한 T5 28W 형광등용 전자식 안정기에 관한 연구)

  • 황락훈;류주현;장은성;조문택;안익수;홍재일
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.70-79
    • /
    • 2003
  • In this paper, T5 28-watt fluorescent lamp ballast using a piezoelectric transformer is fabricated and its characteristic is investigated. Developed electronic ballast is composed of basic circuits and blocks, such as rectifier part, active power factor corrector part, frequency oscillation part using microcontroller and feedback control, piezoelectric transformer and resonant half bridge inverters. The fabricated ballast uses to variable frequency methode in external so exciting that the frequency of piezoelectric transformer could be generated by voltage control oscillator using microcontroller(AT90S4433). The current of fluorescent lamp is detected by feedback control circuit. The signal of inverter output is received using Piezoelectric transformer, and then its output transmitted to fluorescent lamp. Traditional electromagnetic ballasts operated at 50-60Hz have been suffered from noticeable flicker, high loss, large crest factor and heavy weight. A new electronic ballast is operated at high frequency about 75kHz, and then Input power factor, distortion of total harmonic and lamp current crest factor are measured about 0.9!35, 12H and 1.5, respectively Accordingly, the traditional ballast is by fabricated electronic ballast using piezoelectric transformer and voltage control oscillator because of its lighter weight, high efficiency, economic merit and saving energy.

Optimization of Ingredients Formulation in tow Grades Surimi for Improvement of Gel Strength (저급 수리미의 젤 강도 증강을 위한 첨가물의 최적화)

  • CHOI Young-Joon;LEE Ho-Soo;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.556-562
    • /
    • 1999
  • The increasing price of surimi has affected the economical benefits of surimi based food industry, To maintain gel strength in low grade surimi, the optimum formulation adding functional proteins to low grade surimi is required. The objective of this study was to develop the optimum formulation of ingredients in making gels in low grade surimi on the addition of functional non-muscle proteins to low grade surmi by measuring rheological properties of the gels. The rheological qualities of the cooked gels made with A and RA grade surimi on the effects of adding five kinds of starches (potato, wheat, waxy maize, corn and modified corn) and four kinds of functional proteins (bovine plasma protein, dehydrated egg white, soy protein isolate and whey protein concentrate) to the gels were evaluated, The gel styengths at cooking with A and RA grade surimi were decreased with increasing the added starches. The kind of starches added affected little the gel strengths in Rh grade surimi, while potato and corn starches decreased at the least in gel strengths of the gel made with A grade surimi with increasing the concentration of starches. The bovine plasma protein (BPP) significantly increased the gel strength, especially in RA grade surimi, but BPP decreased the whiteness of the gel. Therefore, the optimum content of BPP was up to $2\%$ because of the whiteness of the gels in RA grade surimi, The optimum formulation for the gel with RA grade surimi to satisfy the gel strength of 1000$\times$g and $78\%$ moisture was $40.9\%$ surimi, $9.1\%$ dehydrated egg white (DEW) and $0.9\%$ starch, while that with A grade surimi under the same condition was $37.9\%$ surimi, $6.6\%$ DEW and $3,4\%$ starch.

  • PDF