• Title/Summary/Keyword: spiA

Search Result 401, Processing Time 0.024 seconds

Dyeing Properties of Bacterial Cellulose Fabric using Gardenia Jasminoides, Green Tea, and Pomegranate Peel, and the Effects of Protein Pretreatment (치자, 녹차, 석류껍질을 활용한 박테리아 셀룰로오스 섬유소재의 염색성과 단백질 전처리의 영향)

  • Yerim Hwang;Hyunjin Kim;Hye Rim Kim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.3
    • /
    • pp.511-527
    • /
    • 2024
  • The aim of this study was to impart color to bacterial cellulose (BC) fabric using various natural plant-based dyes-namely, gardenia jasminoides, green tea, and pomegranate peel. A protein pretreatment was also applied to improve the BC fabric's dyeability and mechanical properties. The BC fabric's dyeing and mordanting conditions when using plant-based natural dyes were determined by changes in the K/S values. The dyeability of BC samples dyed with green tea or pomegranate peel improved when they were pretreated with soy protein isolate (SPI) prior to dyeing. Moreover, the SPI pretreatment was efficient in improving the BC fabric's tensile strength and flexibility. This study proposes a method for dyeing BC fabric that uses plant-based natural dyes and confirms the effects of the protein pretreatment on the fabric's dyeability and durability.

Development of a Storage Level and Capacity Monitoring and Forecasting Techniques in Yongdam Dam Basin Using High Resolution Satellite Image (고해상도 위성자료를 이용한 용담댐 유역 저수위/저수량 모니터링 및 예측 기술 개발)

  • Yoon, Sunkwon;Lee, Seongkyu;Park, Kyungwon;Jang, Sangmin;Rhee, Jinyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1041-1053
    • /
    • 2018
  • In this study, a real-time storage level and capacity monitoring and forecasting system for Yongdam Dam watershed was developed using high resolution satellite image. The drought indices such as Standardized Precipitation Index (SPI) from satellite data were used for storage level monitoring in case of drought. Moreover, to predict storage volume we used a statistical method based on Principle Component Analysis (PCA) of Singular Spectrum Analysis (SSA). According to this study, correlation coefficient between storage level and SPI (3) was highly calculated with CC=0.78, and the monitoring and predictability of storage level was diagnosed using the drought index calculated from satellite data. As a result of analysis of principal component analysis by SSA, correlation between SPI (3) and each Reconstructed Components (RCs) data were highly correlated with CC=0.87 to 0.99. And also, the correlations of RC data with Normalized Water Surface Level (N-W.S.L.) were confirmed that has highly correlated with CC=0.83 to 0.97. In terms of high resolution satellite image we developed a water detection algorithm by applying an exponential method to monitor the change of storage level by using Multi-Spectral Instrument (MSI) sensor of Sentinel-2 satellite. The materials of satellite image for water surface area detection in Yongdam dam watershed was considered from 2016 to 2018, respectively. Based on this, we proposed the possibility of real-time drought monitoring system using high resolution water surface area detection by Sentinel-2 satellite image. The results of this study can be applied to estimate of the reservoir volume calculated from various satellite observations, which can be used for monitoring and estimating hydrological droughts in an unmeasured area.

A Study on Linear Energy Transfer and Specific Primary lonizaton for Charged Particles Incident on Water (대전 입자들의 초기 이온화비에 관한 연구 I)

  • 남궁미선;김부길;김정홍
    • Progress in Medical Physics
    • /
    • v.6 no.1
    • /
    • pp.39-47
    • /
    • 1995
  • In order to accurate treat damage induced by ionizing radiation in biological system on the cellular or subcellular level with physical parameters characterising the radiation, specific primary ionization (SPI) is introduced as the parameter which does not suffer from limitation of linear energy transfer (LET). In this present study, we calculate specitic primayt ionization with total ionization cross section (TICS) of electrons, protons and alppa particles incident on water. The used energy ranges cover those that have been freqently used in radiobioligical experiments. For electrons above 1 keV, we have relativistic corrections and also compare the results with other data. For electrons energies below 100keV, our results are in excellent agreement with theoretical calculations published recently by (perris and zarris 1987). These results may be easily applied by the interested radiobiogists.

  • PDF

Effects of Non-meat Protein Binders and Acidification on the Efficiency of Cold-Set Pork Restructuring by High Pressure

  • Hong, Geun-Pyo;Chun, Ji-Yeon;Lee, Si-Kyung;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.32 no.3
    • /
    • pp.301-307
    • /
    • 2012
  • We investigated the effects of non-meat protein binders combined with glucono-${\delta}$-lactone (GdL) on the binding properties regarding restructured pork prepared by high-pressure treatment. Soy protein isolate (SPI), casein (CS), whey protein concentrate (WPC), and egg white (EW) were used as non-meat protein binders and compared with the control (no binder) and with the ${\kappa}$-carrageenan (KC) treatment. The compression and depression rates were 2.3 and 37 MPa/s, respectively, and pressurization was conducted at 200 MPa for 30 min at $4^{\circ}C$. After pressurization, the physical properties (pH, water-holding capacity, color, tensile strength, and microscopic structure) of the sample were evaluated. The combination of pressurization with acidification enabled cold-set meat binding, and the binding strength of restructured pork was enhanced by the addition of non-meat proteins. Among binders, SPI demonstrated the best efficiency in binding meat pieces. Therefore, the present study demonstrated that the combination of acidification and pressurization processes with the utilization of non-meat protein binders has a potential benefit in meat restructuring.

Prediction of Regional Drought considering Aspect and Elevation in Jeju Island under Future Climate Change (미래 기후변화에 따른 제주도의 사면과 해발고도별 가뭄 예측)

  • Park, Jong-Chul;Choi, Kwang-Jun;Song, Sung-Ho
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.649-660
    • /
    • 2014
  • Spatial and temporal patterns of precipitation and temperature occur with regard to aspect and elevation of Mt. Halla in Jeju Island. Therefore, there is a need to predict regional drought associate with them to mitigate of impacts of drought. In this study, regional drought is predicted based on Palmer drought severity index (PDSI) and standardized precipitation index (SPI) using future (2015~2044) climate change scenario RCP (representative concentration pathways) 4.5 classified as 24 regions according to aspect and elevation. The results show that number and duration of drought will be decrease in Jeju Island. However, severity of severe drought will be increase in western and northern aspect with under 200 meters above mean sea level. These findings provide primary information for developing the proactive strategies to mitigate impacts of drought by future climate change in Jeju Island.

Development of a storage level estimation and forecasting techniques in Yongdam Dam basin for drought monitoring using satellite data (가뭄감시를 위한 위성자료 기반 용담댐 유역 저수위 모니터링 및 예측 기술 개발)

  • Park, Kyung Won;Yoon, Sun Kwon;Lee, Seong Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.378-378
    • /
    • 2019
  • 본 연구에서는 용담댐 유역을 대상으로 저수위/저수량 모니터링 및 예측을 위하여 고해상도 위성관측 자료를 이용하는 방법과 위성으로부터 추출한 강수량 자료로부터 가뭄지수를 이용한 저수위를 모니터링하고 SSA를 이용한 PCA방법으로 예측모델을 구축하여 가뭄을 예측하는 방법을 개발하였다. 용담댐 저수위와 SPI(3)와의 상관계수가 0.78로 매우 높은 상관성을 보였으며, 위성자료를 통하여 산정한 가뭄지수를 활용하여 댐 저수위/저수량 모니터링 및 예측 가능성을 진단하였다. SSA에 의한 주성분 분석결과 SPI(3)과 각 RC자료의 상관관계를 분석한 결과 CC=0.87~0.99의 높은 상관성을 보였으며, 표준화된 댐 저수위(N-W.S.L.)와 RC자료의 상관관계를 분석한 결과 CC=0.83~0.97의 비교적 높은 상관성을 보임을 확인하였다. 또한, Sentinel-2 위성의 MSI (Multi-Spectral Instrument) 센서로 댐수위의 변화를 모니터링하기 위해 지수 기법을 적용하여 수체 탐지 알고리즘을 개발하였으며, 용담댐유역에 대해 2016년부터 2018년까지의 수계 면적 변화를 분석하였다. 이를 기반으로 Sentinel-2 위성영상으로 추출한 수계 면적 변화를 이용하여 가뭄감시 분야에 대한 활용 가능성을 제시하였다. 본 연구의 결과는 다양한 위성관측자료로부터 미계측 지역의 저수량 모니터링과 수문학적 가뭄 모니터링/예측에 활용이 가능할 것이다.

  • PDF

Evaluation of Droughts in Seoul Using Two-Dimensional Drought Frequency Analysis (이차원 가뭄빈도해석을 통한 서울지역의 가뭄 평가)

  • Yeon, Je-Mun;Byun, Sung-Ho;Lee, Jung-Kyu;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.335-343
    • /
    • 2007
  • Drought characteristics need to be preceded before establishing a drought mitigation plan. In this study, using a Standardized Precipitation Index (SPI), a hydrologic drought was defined as an event during which the SPIs are continuously below a certain truncation level. Then, a methodology of drought frequency analysis was performed to quantitatively characterize droughts considering drought duration and severity simultaneously. The theory of runs was used to model drought recurrence and to determine drought properties like duration and severity. Short historical records usually do not allow reliable bivariate analyses. However, more than hundred years of precipitation data (1770 ${\sim}$ 1907) collected in Chosun Kingdom Age using an old Korean rain gage called Chukwooki can provide valuable information about past events. It is shown that a bivariate gamma distribution well represented the joint probabilistic properties of Korean drought duration and severity. The overall results of this study show that the proposed bivariate drought frequency analysis overcomes the drawbacks of the conventional univariate frequency analysis by providing a consistent representation of the drought recurrent property.

Drought assessment by bivariate frequency analysis using standardized precipitation index and precipitation deficit: focused on Han river basin (표준강수지수와 강수 부족량을 이용한 이변량 가뭄빈도해석: 한강유역을 중심으로)

  • Kwon, Minsung;Sung, Jang Hyun;Kim, Tae-Woong;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.875-886
    • /
    • 2018
  • This study evaluated drought severity by bivariate frequency analysis using drought magnitude and precipitation deficit. A drought event was defined by Standardized Precipitation Index (SPI) and the precipitation deficit was estimated using reference precipitation corresponding to the SPI -1. In previous studies, drought magnitude and duration were used for bivariate frequency analysis. However, since these two variables have a largely linear relationship, extensibility of drought information is not great compared to the univariate frequency analysis for each variable. In the case of drought in 2015, return periods of 'drought magnitude-precipitation deficit' in the Seoul, Yangpyeong, and Chungju indicated severe drought over 300 years. However, the result of 'drought magnitude-duration' showed a significant difference by evaluating the return period of about 10, 50, and 50 years. Although a drought including the rainy season was seriously lacking in precipitation, drought magnitude did not adequately represent the severity of the absolute lack of precipitation. This showed that there is a limit to expressing the actual severity of drought. The results of frequency analysis for 'drought magnitude-precipitation deficit' include the absolute deficit of precipitation information, so which could consider being a useful indicator to cope with drought.

Risk of Smoke Occurring in the Combustion of Plastics (플라스틱의 연소 시 발생하는 연기 위험성에 관한 연구)

  • You, Jisun;Chung, Yeong-jin
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.69-75
    • /
    • 2019
  • In this study, the combustibility of five types of plastic plates, fiber reinforced plastic (FRP), polystyrene (PS), polycarbonate (PC), polypropylene (PP), and polyvinyl chloride (PVC), were tested using a cone calorimeter (ISO 5660). The PVC plate showed a $44.65kW/m^2$ lower peak heat release rate (HRR) and a $30.97kW/m^2$ lower maximum average rate of heat emission than the other four types of plastics, whereas the PS plate showed a $773.44kW/m^2$ higher peak HRR and $399.14kW/m^2$ higher maximum average rate of heat emission. The PC plate and PS plate showed the highest HRR by a maximum of 3.88 times in $CO_{mean}$ yields, while the PS pate and PP plate showed the highest HRR by a maximum 4.88 times in $CO_{2mean}$ yields. In addition, the smoke performance index (SPI) of the PS plate decreased by 74.81%~95.99%; the smoke growth index (SGI) increased to 76%~300%; the smoke intensity (SI) also increased to 917.73% ~ 9607.57%, and the danger of smoke increased. The PS plate was found to have the highest risk of life damage due to smoke on the thermal and smoke sides.

Proposal of Agricultural Drought Re-evaluation Method using Long-term Groundwater Level Monitoring Data (장기 지하수위 관측자료를 활용한 농업가뭄 재평가 방안 제언)

  • Jeong, ChanDuck;Lee, ByungSun;Lee, GyuSang;Kim, JunKyum
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.4
    • /
    • pp.27-43
    • /
    • 2021
  • Since climate factors, such as precipitation, temperature, etc., show repeated patterns every year, it can be said that future changes can be predicted by analyzing past climate data. As with groundwater, seasonal variations predominate. Therefore, when a drought occurs, the groundwater level is also lowered. Thus, a change in the groundwater level can represent a drought. Like precipitation, groundwater level changes also have a high correlation with drought, so many researchers use Standard Groundwater Level Index (SGI) to which the Standard Precipitation Index (SPI) method is applied to evaluate the severity of droughts and predict drought trends. However, due to the strong interferences caused by the recent increase in groundwater use, it is difficult to represent the droughts of regions or entire watersheds by only using groundwater level change data using the SPI or SGI methods, which analyze data from one representative observation station. Therefore, if the long-term groundwater level changes of all the provinces of a watershed are analyzed, the overall trend can be shown even if there is use interference. Thus, future groundwater level changes and droughts can be more accurately predicted. Therefore, in this study, it was confirmed that the groundwater level changes in the last 5 years compared with the monthly average groundwater level changes of the monitoring wells installed before 2015 appeared similar to the drought occurrence pattern. As a result of analyzing the correlation with the water storage yields of 3,423 agricultural reservoirs that do not immediately open their sluice gates in the cases of droughts or floods, it was confirmed that the correlation was higher than 56% in the natural state. Therefore, it was concluded that it is possible to re-evaluate agricultural droughts through long-term groundwater level change analyses.