• Title/Summary/Keyword: spheroidal graphite cast iron

Search Result 62, Processing Time 0.022 seconds

A study on Mechanical and Fatigue Properties of Spheroidal Graphite Cast Iron (구상흑연주철의 기계적 성질및 피로특성에 관한 연구)

  • Park, No-Gwang;Kim, Chang-Ju;Jun, Eui-Jin
    • 한국기계연구소 소보
    • /
    • s.9
    • /
    • pp.83-93
    • /
    • 1982
  • The influence of different heat treatment conditions on microstructure, mechanical and fatigue properties of Spheroidal Graphite cast Iron with 0.4-0.6% Mn was investigated. 1) Maximum tensile strength was arrived by tempering at about $450^{\circ}C$after quenching. Tempering at higher than $600^{\circ}C$ was changed martensitic structure to ferritic structure and secondary graphites were precipitated. 2) The relationship between matrix hardness and total hardness of the specimens are as following. [HB]$T$=0.7[HB] [HB]$M$+35 Maximum tensile strength was arrived at the total hardness of HB400-450. 3) Endurance ratio decreases with increasing total hardness, and fatigue limits can be presumed from as following. $\sigmaf$=$\sigmat$

  • PDF

A Study on the Effects of Cu Addition for Strength in Cast Iron

  • Kim, S.Y.;Lee, H.C.;Huh, B.Y.
    • Journal of Korea Foundry Society
    • /
    • v.1 no.3
    • /
    • pp.2-13
    • /
    • 1981
  • It was one of the most important studies in materials to obtain high strength in cant iron. Therefore, malleable cast iron and spheroidal graphite cast iron were developed. However, due to the large demand of gray cast iron, a study on the development for high strength in is very important. The author published a paper on the study on the effect of Al addition. In this study, the effect of Cu addition will be assessed on strength improvement in cast iron. Copper is known as the element of graphitization and pearlitization, so it is expected to obtain valuable results. The results obtained from this study are as follows ; 1. When copper was added to cast iron, tensile strength increased by 30%, and hardness increased by 13%. 2. The tensile strength showed a maximum when copper was added 1.0%.

  • PDF

Effect of Carbon on the Micro Structure and Hardness of Internally Hardened Ductile Cast Iron Roll (내부 경화형 구상흑연주철 롤 동체와 넥의 미세조직과 경도에 미치는 탄소 영향)

  • Sang-Mook Lee;Ki-Hang Shin;Byung-Chul Choi;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2023
  • This study was investigated the effect of carbon on the micro-structure and hardness of ductile cast iron roll with internal curing capacity. Spheroidal graphite existed at roll body with rapid cooling, but granular graphite existed at roll neck with slow cooling. The volume fraction of graphite increased at roll body with rapid cooling, That of roll neck with slow cooling decreased, but graphite size increased. The volume fraction of cementite decreased, but volume fraction increased. The cementite size was larger at roll neck than roll body. The hardness was decreased at roll body and roll neck due to volume fraction of cementite. The hardness of roll body was higher than roll neck.

The Effects of Gas Bubbles on the Graphite Spheroidization in Cast Iron (주철의 흑연구상화에 미치는 기포의 영향)

  • Park, Shil-La;Choi, Dap-Chun;Kim, Kwan-Hyu
    • Journal of Korea Foundry Society
    • /
    • v.9 no.6
    • /
    • pp.474-482
    • /
    • 1989
  • The aim of this research is to investigate the effects of gas bubbles on the formation of spheroidal graphite in cast iron, Fe-Si-8%Mg alloy, mischmetal hydride($MmH_2$) and $CaCO_3$, which discharge various amounts of Mg, $H_2$ and $Co_2$, gases, were added to Fe-3.9% C-2.0%Si melt and the melt was innoculated with 0.3wt% of 75%Fe-Si. The spheroidal graphites and/or compacted vermicular graphites were produced with more than 0.625cc/g of Mg gas or more than 0.3125cc/g of $H_2$ gas while $CO_2$ gas did not contribute to graphite spheroidization. Nodule counts increased with the amount of Fe-Si-Mg added ; but they decreased with the amount of $MmH_2$ added because the number of effective gas bubbles decrease with the increase in Mm residual. The bull's eye structure was revealed with 0.625cc/g, 1.25cc/g of Mg and 0.3125cc/g of $H_2$ ; the ledeburite structure was revealed with more than 0.625cc/g of $H_2$.

  • PDF

A Study on the Initial Crack Growth in Spheroidal Graphite Cast Iron under Extremely Low Cycle Loading (극저사이클 하중을 받는 구상흑연주철의 초가균열성장에 관한 연구)

  • Kim, Min-Gun;Lim, Bok-Kyu;Kim, Dong-Youl
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.3-8
    • /
    • 2002
  • In this study, extremely low cycle fatigue tests were carried out under push-pull loading conditions using graphite cast iron (GCD). In order to clarify the fatigue fracture mechanism of GCD in an extremely low cycle fatigue regime successive observations of internal fatigue damage were performed. The results obtained are as follows. (1) The process of extremely low cycle fatigue can be classified into three stages which are composed of the generation, growth and coalescence of microvoids inside materials. (2) In an extremely low cycle fatigue regime, microvoids originate from debonding of graphite-matrix interface.

  • PDF

Effect of Special Heat Treatments and Alloying Element(Ni) on Strengthening and Toughening of Ductile Cast Iron (구상흑연주철의 강인화에 미치는 특수열처리와 합금원소의 영향)

  • Kim, Sug-Won;Choi, Young-Seon
    • Journal of Korea Foundry Society
    • /
    • v.10 no.4
    • /
    • pp.299-308
    • /
    • 1990
  • Ductile cast iron has a good ductility and ductility and toughness than those of gray cast iron, because the shape of graphite is spheroidal. It has been reported that the strengthening and toughening of the ductile cast iron was resulted from the good modification of various matrix structures obtained by the heat treatment or addition of alloying elements. This study aims to investigate the effect of various special heat treatment(Cyclic Heat Treatment, Intermediate Heat Treatment, Step Quenching), austempering and alloying element(Ni) on the strength and toughness of ductile cast iron. The results obtained from this study are summarized as follows. 1) With addition of Ni, the amount of pearlite or bainite were increased and the morphologies of pearlite or bainite became finer by special heat treatments. 2) As the Ni added and not added ductile cast iron were treated by austenitizing at $900^{\circ}C$ and $840^{\circ}C$, in the latter the austenite was mostly formed in the vicinity of eutectic cell boundary, but in the former on the whole matrix. 3) In cyclic heat treatment, the volume fraction of pearlite was increased and the shape of pearlite was fined with increase of the number of cycle. 4) The shape of pearlite was mostly bar type in the intermediate heat treatment, but spheroidal type in step quenching. 5) The mechanical properties of ductile cast iron containing 1.5%Ni austempered at $400^{\circ}C$ for 25min. after austenitizing at $900^{\circ}C$ for 15min. were a good value of hardness 105(HRB), impact energy 12.5(kg.m), tensile strength 112($kg/mm^2$) and elongation 6.8(%).

  • PDF

Effects of the Microstructures on the Wear Characteristics of Cast irons (주철의 마모특성에 미치는 미세조직의 영향)

  • Kim, Sug-Won;Park, Jin-Sung;Lee, Hyung-Chul;Kim, Ki-Kon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.323-330
    • /
    • 2004
  • This study aims to investigate on the effects of the microstructures on the wear characteristics of the different grey cast iron(GC) and spheroidal ductile cast iron(DCI). Wear test using wear tester of pin-on-disc type was carried out under the conditions of load 47.2N , velocity 0.2m/s, distance 4000m. At the GC, Wear rates depend on graphite type and oxide layer formed at wear surface. Weak rosette graphites are easily broken and formed wear debris over 30 ${\mu}m$. This wear debris occurs scuffing at wear surface. As a result of surface deformation, Narrow regions of the matrix between the graphite flakes and the contact surface lead to the failure of the necks. Wear rate for the DCI depended on hardness of matrix more than size of graphite.

Effects of the Alloying Elements and Special Heat Treatment on the Multi-phase (Ferrite-Bainite-Martensite), Strength and Toughness in Ductile Cast Iron (구상흑연주철(球狀黑鉛鑄鐵)의 혼합조직(混合組織) 및 강인성(强靭性)에 미치는 합금원소(合金元素)와 특수열처리(特殊熱處理)의 영향(影響))

  • Kim, Sug-Won;Lee, Eui-Kweon;Sim, Jae-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.432-440
    • /
    • 1993
  • Ductile cast iron has a good ductility and toughness than those of gray cast iron, because the shape of graphite is spheroidal. Also, it has been reported that, additional strengthening and toughening of the ductile cast iron can be obtainded from the proper combination of matrix structures by the heat treatment and addition of alloying elements. In this study the effect of special heat treatment and addition of alloying elements(Ni, Mo) on the multi-phase(ferrite-bainite-martensite) structures, strength and toughness of ductile cast iron were studied systematically. In water quenching from $770^{\circ}C$, the martensite volume(%) increased, but the ferrite volume(%) decreased with increment of Ni content. In as cast, pearlite volume(%) and hardness increased with increment of Mo and Ni contents. And with the increment of the destabilization austempering holding time, the bainite volume(%) increased but the martensite volume(%) decreased. As destabilization austempering holding time is same, bainite volume(%) decreased, martensite increased with the increment of Ni and Mo contents. The hardness and tensile strength decreased, but impact energy increased with the decrease of Ni and Mo contents, and increment of holding time of destabilization austempering treatment.

  • PDF