• Title/Summary/Keyword: spherical shell structure

Search Result 63, Processing Time 0.023 seconds

Characteristic Analysis of Poly(4-Vinyl Phenol) Based Organic Memory Device Using CdSe/ZnS Core/Shell Qunatum Dots

  • Kim, Jin-U;Kim, Yeong-Chan;Eom, Se-Won;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.289.1-289.1
    • /
    • 2014
  • In this study, we made a organic thin film device in MIS(Metal-Insulator-Semiconductor) structure by using PVP (Poly vinyl phenol) as a insulating layer, and CdSe/ZnS nano particles which have a core/shell structure inside. We dissolved PVP and PMF in PGMEA, organic solvent, then formed a thin film through a spin coating. After that, it was cross-linked by annealing for 1 hour in a vacuum oven at $185^{\circ}C$. We operated FTIR measurement to check this, and discovered the amount of absorption reduced in the wave-length region near 3400 cm-1, so could observe decrease of -OH. Boonton7200 was used to measure a C-V relationship to confirm a properties of the nano particles, and as a result, the width of the memory window increased when device including nano particles. Additionally, we used HP4145B in order to make sure the electrical characteristics of the organic thin film device and analyzed a conduction mechanism of the device by measuring I-V relationship. When the voltage was low, FNT occurred chiefly, but as the voltage increased, Schottky Emission occurred mainly. We synthesized CdSe/ZnS and to confirm this, took a picture of Si substrate including nano particles with SEM. Spherical quantum dots were properly made. Due to this study, we realized there is high possibility of application of next generation memory device using organic thin film device and nano particles, and we expect more researches about this issue would be done.

  • PDF

Preparation of 40 wt.% Ag-coated Cu Particles with Thick Ag Shells and Suppression of Defects in the Particles (두꺼운 Ag shell이 형성되는 40 wt.% Ag 코팅 Cu 입자의 제조 및 입자 내 결함 억제)

  • Choi, Eun Byeol;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.65-71
    • /
    • 2017
  • To prepare the Cu-based filler material indicating enhanced oxidation resistance property and Ag content, Ag-coated Cu particles was fabricated by Ag plating of 40 wt % on the spherical Cu particles with an average size of $2{\mu}m$ and their oxidation behavior was also evaluated. In the case that ethylenediaminetetraacetic acid was used alone, the fabricated particles frequently showed broken structures such as delamination at Ag shell/core Cu interface and hollow structure that are induced by excessive galvanic displacement reaction. As a result, fraction of defect particles increased up to 19.88% after the Ag plating of 40 wt.%. However, the fraction in the 40 wt.% Ag-coated Cu particles decreased to 9.01% and relatively smooth surface and dense microstructure in the Ag shell were also observed with additional usage of hydroquinone as a complexing agent. Ag-coated Cu particles having the enhanced microstructure did not show any weight increase by oxidation for exposure to air at $160^{\circ}C$ for 2 h, indicating increased oxidation resistance property.

Characteristics of Fe-Ni Nanopowders Prepared by Electrical Explosion of Wire in Water and Ethanol

  • Bac, L.H.;Kim, B.K.;Kim, J.S.;Kim, J.C.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.435-439
    • /
    • 2011
  • In this work, we prepared Fe-Ni alloy nanopowders by wire electrical explosion in deionized water and ethanol. Particles size and morphology of the as-synthesized nanoparticles prepared in water and ethanol were observed by transmission electron microscopy. In both cases, the as-synthesized nanoparticles were in nearly spherical shape and their size distribution was broad. The particles prepared in the water were in core-shell structure due to the oxidation of Fe element. X-ray diffraction was used to analyze the phase of the nanopowders. It showed that the nanopowders prepared in water had ${\gamma}$-Fe-Ni solid solution and FeO phase. The samples obtained in ethanol were in two phases of Fe-Ni solid solution, ${\gamma}$-Fe-Ni and ${\alpha}$-Fe-Ni. Bulk samples were made from the as-synthesized nanopowders by spark plasma sintering at $1000^{\circ}C$ for 10 min. Structure of the bulk sample was observed by scanning electron microscope. Magnetic properties of the as-synthesized nanopowders and the bulk samples were investigated by vibrating sample magnetometer. The hysteresis loop of the assynthesized nanopowders and the sintered bulk samples revealed a ferromagnetic characteristic.

Comparative Study on Collision Strength of LNG Carriers

  • Choe, Ick-Hung;Kim, Jae-Hyun;Ahn, Ho-Jong;Kim, Oi-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.3
    • /
    • pp.36-44
    • /
    • 2001
  • The collision energy absorbing characteristics of side structure of the LNG carriers which have the cargo containment systems of the spherical and the membrane types are compared. A failure mechanism of the double hull side structures of 130, 000 $m^3$ class LNG carriers under sideways collision event has been simulated by using the detailed finite element calculations. In ship collision analysis, the finite element method based on explicit time integration has been use[1 with much success. Finite element modeling techniques for detail description of structural members antral ship motion regarding the dynamic behavior allowed to investigate the effect of bow shape and the initial contact position on side shell of collided ship. In the numerical simulations of the ship-to-ship sideways collision, the effect of the colliding bow shapes and the change of the colliding ship draft are investigated. The critical collision energy which is absorbed by a side structure of a collided ship until the fore-end of colliding ship arrives at the boundary of the cargo tank is calculated. The critical speed of specified colliding ships which can not penetrate the boundary of the LNG cargo tank of the collided ship under collision accident if evaluated.

  • PDF

LINEAR POLARIZATION OF A DOUBLE PEAKED BROAD EMISSION LINE IN ACTIVE GALACTIC NUCLEI

  • Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.59-65
    • /
    • 2011
  • A small number of active galactic nuclei are known to exhibit prominent double peak emission profiles that are well-fitted by a relativistic accretion disk model. We develop a Monte Carlo code to compute the linear polarization of a double peaked broad emission line arising from Thomson scattering. A Keplerian accretion disk is adopted for the double peak emission line region and the geometry is assumed to be Schwarzschild. Far from the accretion disk where flat Minkowski geometry is appropriate, we place an azimuthally symmetric scattering region in the shape of a spherical shell sliced with ${\Delta}{\mu}=0.1$. Adopting a Monte Carlo method we generate line photons in the accretion disk in arbitrary directions in the local rest frame and follow the geodesic paths of the photons until they hit the scattering region. The profile of the polarized flux is mainly determined by the relative location of the scattering region with respect to the emission source. When the scattering region is in the polar direction, the degree of linear polarization also shows a double peak structure. Under favorable conditions we show that up to 0.6% linear polarization may be obtained. We conclude that spectropolarimetry can be a powerful probe to reveal much information regarding the accretion disk geometry of these active galactic nuclei.

Fabrication and Characterization of Carbon-Coated Cu Nanopowders by Pulsed Wire Evaporation Method (전기선폭발법에 의해 카본 코팅된 Cu 나노분말의 제조 및 특성 연구)

  • Lee, H.M.;Park, J.H.;Hong, S.M.;Uhm, Y.R.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.243-248
    • /
    • 2009
  • Carbon-coated Cu nanopowders with core/shell structure have been successfully fabricated by pulsed wire evaporation (PWE) method, in which a mixed gas of Ar/$CH_4$ (10 vol.%) was used as an ambient gas. The characterization of the samples was carried out using x-ray diffraction (XRD), scanning electron microscope (SEM), and high resolution transmission electron microscope (HRTEM). It was found that the nanoparticles show a spherical morphology with the size ranging of 10-40 nm and are covered with graphite layers of 2-4 nm. When oxygen-passivated Cu nanopowders were annealed under flowing argon gas (600 and 800$^{\circ}C$), the crystallinity of $Cu_2O$ phase and the particle size gradually increased. On the other hand, carbon-coated Cu nanopowders remained similar to as-prepared case with no additional oxide or carbide phases even after the annealing, indicating that the metal nanoparticles are well protected by the carbon-coating layers.

A Molecular Dynamics Simulation on the Self-assembly of ABC Triblok Copolymers. 2. Effects of Block Sequence

  • Jo, Won-Ho;Ko, Min-Jae;Kim, Seung-Hyun
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.8-13
    • /
    • 2002
  • The effect of block sequence on the self-assembly of ABC-type triblock copolymers in the ordered state is investigated using an isothermal-isobaric molecular dynamics simulation. The block sequence has an important effect ,on the ]norphology of ABC triblock copolymers. Different morphologies are observed depending on the block sequence as well as the block composition. The triblock copolymers with the volume fraction of 1 : 1 : 1 ($f_A$=$f_B$=$f_C$= 0.33) show the three phase and four layered lamellar structures irrespective of the block sequence. The $A_{32}$$B_{16}$$C_{32}$triblock copolymer with $f_B$=0.2 shows a morphology In which cylinders of midblock B are formed at the interface between A and C lamellae, whereas the morphology of triblock copolymer $B_{16}$$C_{32}$ $A_{32}$ and $C_{32}$ $A_{32}$ $B_{16}$ show a cylindrical core-shell structure and a lamellar type morphology, respectively. The $A_{20}$$B_{40}$$C_{20}$the triblock copolymer with the block B as a major component shows a tricontinuous structure, whereas both $B_{40}$$C_{20}$$A_{20}$ and $C_{20}$$A_{20}$$B_{40}$ triblock coolymers exhibit the lamellar structures. When the block B has larger volrome fraction with $f_B$=0.75, the matrix is composed of block B, and other two blocks A and C form spherical domains.

Synthesis and Characterization of Hollow Silicon-Carbon Composites as a Lithium Battery Anode Material

  • Han, Won-Kyu;Ko, Yong-Nam;Yoon, Chong-Seung;Choa, Yong-Ho;Oh, Sung-Tag;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.517-521
    • /
    • 2009
  • Si-C composite with hollow spherical structure was synthesized using ultrasonic treatment of organosilica powder formed by hydrolysis of phenyltrimethoxysilane. The prepared powder was pyrolyzed at various temperatures ranging from 900 to 1300 $^{\circ}C$ under nitrogen atmosphere to obtain optimum conditions for Li-ion battery anode materials with high capacity and cyclability. The XRD and elemental analysis results show that the pyrolyzed Si/C composite at 1100 $^{\circ}C$ has low oxygen and nitrogen levels, which is desirable for increasing the electrochemical capacity and reducing the irreversible capacity of the first discharge. The solid Si-C composite electrode shows a first charge capacity of $\sim$500 mAhg$^{-1}$ and a capacity fade within 30 cycles of 0.93% per cycle. On the other hand, the electrochemical performance of the hollow Si-C composite electrode exhibits a reversible charge capacity of $\sim$540 mAhg$^{-1}$ with an excellent capacity retention of capacity loss 0.43% per cycle up to 30 cycles. The improved electrochemical properties are attributed to facile diffusion of Li ions into the hollow shell with nanoscale thickness. In addition, the empty core space provides a buffer zone to relieve the mechanical stresses incurred during Li insertion.

Preparation of ZnO@TiO2 nano coreshell structure by the polymerized complex and sol-gel method (착체중합법과 sol-gel법에 의한 ZnO@TiO2 나노 코아쉘 구조의 제조)

  • Lim, Chang Sung
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2008
  • Nano core shell structures of $TiO_2$ particles coated on surface of ZnO nanoparticles were prepared by the polymerized complex and sol-gel method. The average particle size of ZnO by the polymerized complex method showed 100 nm and the average particle size of $TiO_2$ by the sol-gel method showed below 10 nm. The average particle size of $ZnO@TiO_2$ nano core shell struture represented about 150 nm. The agglomeration between the ZnO particles using the polymerized complex method was highly controlled by the uniform absorption of $TiO_2$ colloid on the spherical ZnO surfaces. The driving force of heterogeneous bonding between ZnO and $TiO_2$ was induced by the Coulomb force. The ZnO and $TiO_2$ particles electrified with + and - charges, respectively, resulted in strong bonding by the difference of iso-electric point (IEP) when they laid neutrality pH area, depending on the heterogeneous surface electron electrified by the different zeta potential on the pH values.

Development of Equations for Static Design Loads of Sphere Type LNG Tank with Cylindrical Extension (원통 확장부를 갖는 구형 LNG 탱크의 정적 설계하중 산출식 개발)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5060-5066
    • /
    • 2015
  • The number of shop needed for the fabrication of sphere type LNG tank is proportional to that of the tank radius to be constructed. Due to limitation of facility investment including building sites, it is practically difficult to fabricate various size tanks of perfectly spherical shape in the yards. The efficient method to increase cargo tank capacity is to extend vertically the conventional sphere type LNG tank by inserting a cylindrical shell structure. In this study, equations for static design loads are developed for sphere type LNG tank with central extension. The results of this study will be combined with dynamic design loads to build the simplified analysis method which enable the precise initial estimate instead of time consuming finite element analysis.