• Title/Summary/Keyword: spherical particle

Search Result 675, Processing Time 0.027 seconds

Synthesis of nanosized MFI zeolite using TEOS and TPAOH precursors (TEOS 와 TPAOH 출발물질을 이용한 나노 크기의 제올라이트 합성)

  • Bae, Hye Jin;Choi, Byung Ho;Cho, Seong Hoon;Won, Soo Hyun;Lee, Bo Kyung;Ok, Hae Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.22-27
    • /
    • 2014
  • Nanosized zeolite was prepared in an autoclave at a hydrothermal temperature range of 100 to $170^{\circ}C$. In TEM and particle-size analyses, the size of the nanosized powders was found to be 10-300 nm, and its distribution is uniform and spherical, depending on the hydrothermal temperature. XRD confirms that the nanosized powder is MFI zeolite.

Li-doped Y2SiO5:Ce, Blue-emitting Phosphor (Li-이온이 도핑된 Y2SiO5:Ce 청색 형광체)

  • Park, Jung-Cheol;Jeon, Gi-Wan
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.232-236
    • /
    • 2006
  • The Y1.99-xMxCe0.01SiO5(M=Li, La, Nd, and Gd) phosphors were synthesized by solid-state reaction at 1350oC for 10h under reducing atmosphere in order to improve properties of blue emitting phosphors. Compared with commercial blue phosphors, the Y2SiO5:Ce blue phosphors substituted with various elements showed significant enhancement of the emission intensity. Particularly, 1 mol% Li doped Y2SiO5:Ce phosphors indicated the maximum emission intensity in the photoluminescence spectra. Thanks to SEM analyses revealed that the morphology of Y2SiO5:(Ce,Li) blue phosphors was a pseudo-spherical with particle size of 3m.

Development of Polymeric Blend Microspheres from Chitosan-Hydroxypropylmethyl Cellulose for Controlled Release of an Anti-Cancer Drug

  • Reddy, Lakshmi C. Narayana;Reddy, Rama Subba P.;Rao, Krishna K.S.V.;Subha, M.C.S.;Rao, Chowdoji K.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.439-446
    • /
    • 2013
  • Chitosan (CS) and hydroxypropylmethyl cellulose (HPMC) blend microspheres were prepared by water-in-oil emulsion technique and were loaded with an anti-cancer drug 5-fluorouracil (5-FU). CS-HPMC microspheres were characterized by Fourier transform infrared spectroscopy to confirm the cross-linking reaction. Scanning electron microscopy (SEM) was also used to assess the surface morphology of particles prepared. The quantity of release of 5-FU from the microspheres have been studied in terms of blend composition and amount of cross-linking agent. Differential scanning calorimetry and X-ray diffraction techniques indicated a uniform distribution of 5-FU particles in microspheres, whereas SEM suggested the spherical structure of the microspheres with slight rough surface. The in vitro drug release indicated that the particle size and release kinetics depend upon blend composition, amount of cross-linking agent used and amount of 5-FU present in the microspheres.

Controlled Release of Bordetella Bronchiseptica Dermonecrotoxin(BBD) Vaccine from BBD-Loaded Chitosan Microspheres In Vitro

  • Jiang, Hu-Lin;Park, In-Kyu;Shin, Na-Ri;Yoo, Han-Sang;Akaike, Toshihiro;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.346-350
    • /
    • 2004
  • Chitosan microspheres were prepared by ionic gelation process with sodium sulfate for nasal vaccine delivery. Bordetella Bronchiseptica Dermonecrotoxin (BBD) as a major virulence factor of a causative agent of atrophic rhinitis (AR) was loaded to the chitosan microspheres for vaccination. Morphology of BBD-loaded chitosan microspheres was observed as spherical shapes. The average particle sizes of the BBD-loaded chitosan microspheres were about $2.69$\mid${\;}\mu\textrm{m}$. More BBD was released with an increase of molecular weight of chitosan and with an increase of medium pH in vitro due to weaker intermolecular interaction between chitosan and BBD. Tumor necrosis $factor-{\alpha}{\;}(TNF{\alpha})$ and nitric oxide (NO) from RAW264.7 cells stimulated with BBD-loaded chitosan microspheres were gradually secreted, suggesting that released BBD from chitosan microspheres had immune stimulating activity of AR vaccine.

Lubrication Characteristics of Nano-oil with Different Surface Hardness of Sliding Members (나노 윤활유를 이용한 압축기 습동부 재질의 경도에 따른 윤활특성 평가)

  • Han, Young-Cheol;Ku, Bon-Cheol;Lee, Kwang-Ho;Hwang, Yu-Jin;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.916-921
    • /
    • 2009
  • In this study, lubrication characteristics of sliding members were compared with the change of the hardness of friction surfaces and the application of nano-oil. The materials of the specimens were gray cast iron (AISI 35, AISI 60) and nickel chromium molybdenum steel (AISI 4320). The Friction coefficients and the temperature variations of on the frictional surfaces were measured by disk-on-disk tribotester under the condition of fixed rotating speed. The friction surfaces were observed by scanning electron microscope (SEM). In the results, the friction coefficients of the disk surface were increased as hardness difference was increased. The friction coefficient lubricated in nano-oil was less than mineral oil. This is because a spherical nano particle plays a tiny ball bearing between the frictional surfaces, improved the lubrication characteristics.

  • PDF

Effect of pH and Drying Temperature on Luminescent Properties of Zn2SiO4:Mn,Al Green Phosphors by Sol-Gel Technique (졸-겔 합성에서 pH 및 건조온도가 Zn2SiO4:Mn,Al 녹색 형광체의 발광특성에 미치는 영향)

  • Sung, Bu-Yong;Han, Cheong-Hwa;Park, Hee-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.333-337
    • /
    • 2005
  • In order to improve the performance of green emitting phosphors for plasma display panel, the $Zn_2SiO_4:Mn,Al$ phosphors were synthesized using sol-gel technique and studied using SEM and VUV photoluminescence spectrometer. pH values of the starting solutions (pH = 0.5$\~$2.34) were controled by HCl as the catalysis of hydrolysis and wet gels were dried at $80^{\circ}C$ and $120^{\circ}C$, respectively. We investigated the effects of pH and drying temperatures during sol-gel processes. The results indicated that the phosphor prepared at pH = 1 showed the maximum emission intensity in both drying conditions and the effect of pH of the starting solution on morphology were increased with particle size as HCl and phosphor dried at high temperature showed more spherical and smaller particles than at low.

Effect of Heat-Treatment on the Optical Properties of Self-Assembled SiO2 Photonic Crystals (자기조립을 통해 형성된 실리카 광자결정의 광특성에 미치는 열처리 효과)

  • O, Yong-Taeg;Kim, Myung-Soon;Shin, Dong-Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.127-131
    • /
    • 2005
  • We examined the effect of low temperature heat-treatment on the optical properties of the photonic crystals self-assembled using a monodispersed spherical $SiO_2$ nanoparticle. When the heat treatment temperature increased, the reflectance peak, which is induced by the photonic band gap, moved to a shorter wavelength direction, and the peak intensity of Fabry-Perot fringes also increased. The highest reflectance peak intensity was obtained in the sample heat-treated at $250\~300^{\circ}C$. The heat-treatment reduced the average particle size and the quantity of defects, and increased the packing density of the photonic crystal.

Preparation and Sintering Characteristics of Ce0.8Gd0.2O1.9 Powder by Ammonium Carbonate Co-precipitation (탄산암모늄 공침을 이용한 Ce0.8Gd0.2O1.9 분말의 합성 및 소결특성)

  • Yoo, Young-Chang;Chung, Byung-Joo;Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.118-123
    • /
    • 2012
  • GDC20($Ce_{0.8}Gd_{0.2}O_{1.9}$) powder was synthesized from Ce and Gd nitrate solutions using ammonium carbonate($(NH_4)_2CO_3$) as a precipitant. Attrition-milling of the powder, which had been calcined at $700^{\circ}C$ for 4 h, decreased an average particle size of 2.2 ${\mu}m$ to 0.5 ${\mu}m$. The milled powder consisted of nano-sized spherical primary particles. Due to the excellent sinterability of the powder, sintering of the powder compacts for 4 h showed relative densities of 80% at 1000 $^{\circ}C$ and 96.5% at $1200^{\circ}C$, respectively. Densification was found to almost complete at $1300^{\circ}C$, resulting in a dense and homogeneous microstructure with a relative density of 99.5%. The grains of ~0.2 ${\mu}m$ in size at $1200^{\circ}C$ grew to ~1 ${\mu}m$ in size at $1300^{\circ}C$ as a result of a rapid grain growth.

Synthesis and Photoluminescence Properties of ZrO2:Eu3+ Nanoparticles Using Salt-Assisted Ultrasonic Pyrolysis Process (염 보조 초음파 분무 열분해법을 이용한 ZrO2:Eu3+ 나노입자의 합성 및 발광 특성)

  • Hwangbo, Young;Lim, Hyo Ryoung;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.270-275
    • /
    • 2017
  • Inorganic phosphors based on $ZrO_2:Eu^{3+}$ nanoparticles were synthesized by a salt-assisted ultrasonic spray pyrolysis process that is suitable for industrially-scalable production because of its continuous nature and because it does not require expensive precursors, long reaction time, physical templates or surfactant. This facile process results in the formation of tiny, highly crystalline spherical nanoparticles without hard agglomeration. The powder X-ray diffraction patterns of the $ZrO_2:Eu^{3+}$ (1-20 mol%) confirmed the body centered tetragonal phase. The average particle size, estimated from the Scherrer equation and from TEM images, was found to be approximately 11 nm. Photoluminescence (PL) emission was recorded under 266 nm excitation and shows an intense emission peak at 607 nm, along with other emission peaks at 580, 592 and 632 nm which are indicated in red.

Hydrothermal Reduction of $\Co(OH)_2$ to Cobalt Powder Preparation ($Co(OH)_2$로부터 수열법에 의한 코발트 분말제조)

  • Kim, Dong-Jin;Chung, Hun-Saeng;Yu Kening
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.675-679
    • /
    • 1999
  • An investigation was performed to prepare spherical cobalt powder with about particle size of 400nm from aqueous cobalt hydroxide slurry under hydrothermal reduction conditions using palladium chloride as a catalyst. The reduction kinetics was in good agreement with a surface reaction core model equation. and the activation energy obtained from Arrhenius plots was 55.6 KJ/mol at the temperature range of $145~195^{\circ}C$. Additionally, the study showed that the cobalt reduction rate is proportional to the initial hydrogen pressure with a reaction order of n=0.63. which corresponds to the gas chemisorption reaction type.

  • PDF