• Title/Summary/Keyword: spherical particle

Search Result 679, Processing Time 0.03 seconds

Effect of Surfactant on Synthesis of Colloidal Ag Nanoparticles (콜로이드 Ag 나노입자 합성시 계면활성제의 영향)

  • Lee Jong-Kook;Choi Nam-Kyu;Seo Dong-Seok
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.340-347
    • /
    • 2005
  • Silver nanoparticles were synthesized by chemical reduction method from aqueous silver nitrate solution ana hydrazine as a reduction agent. The morphology, particle size and shape were dependent on the mixing method, reaction temperature and time, molar ratio of hydrazine and silver nitrate, the kind of surfactant, and the addition of surfactant. The stability of the colloidal silver was achieved by the adsorption of surfactant molecules onto the particle. Silver nanoparticles have a characteristic absorption maximum at 430 nm under UV irradiation. It was found that the colloid was nanometer m size and formed very stable dispersion of silver. The Ag nanoparticles obtained showed the spherical shape with the size range of 10-30 nm.

Development of New Polymer Powders for the Industrial SFF system by using SLS Process (SLS 공정을 이용한 산업용 SFF 시스템용 신소재 고분자분말 개발)

  • Bang, Young-Kil;Choi, Ki-Seop;Park, Chang-Hyun;Kim, Hyung-Il;Lim, Byung-Seok;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1404-1409
    • /
    • 2007
  • Polymers for laser sintering were needed in order to fabricate the articles with the three-dimensional duplication equipment of SLS (selective laser sintering) process. The thermal properties, particle size, distribution, and shape of polymer powder had a close relation with the processibility of laser sintering. In this study, we prepared new polymer powders with uniform size and higher bulk density by wet process. Wet process consists of several finely-controlled steps such as dissolution, nucleation, propagation and crystallization. Several additives were added to improve the thermal, rheological, and flow properties.

  • PDF

Photocatalytic Properties of TiO2 Nanopowder Synthesized by Chemical Vapor Condensation Process (화학기상응축 공정으로 제조한 TiO2 나노분말의 광촉매 특성)

  • 임성순;남희영;윤성희;이창우;유지훈;이재성
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.123-128
    • /
    • 2003
  • $TiO_2$ nanopowder was synthesized by chemical vapor condensation (CVC) process and its photocatalytic property depending on microstructure was considered in terns of decomposition rate of organic compound. In order to control microstructure of $TiO_2$ nanopowder such as particle size and degree of agglomeration, precursor flow rate representing number concentration was changed as a process variable. In TEM observation, spherical $TiO_2$ nanoparticles with average size of 20 nm showed gradual increases in particle size and degree of agglomeration with increase of precursor flow rate. Also decomposition rate of organic compound increased with decreasing precursor flow rate. Thus, it was concluded that photocatalytic property was enhanced by targe surface area of disperse $TiO_2$ nanoparticles synthesized at lower precursor flow rate condition in CVC process.

The effect of fly ash/slag on the property of reactive powder mortar designed by using Fuller's ideal curve and error function

  • Hwang, C.L.;Hsieh, S.L.
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.425-436
    • /
    • 2007
  • This study is mainly focused on applying Fuller's ideal gradation curve to theoretically design blended ratio of all solid materials of a reactive powder mortar (RPM), also known as reactive powder concrete (RPC), with the aid of error function, and then to study the effect of fly ash/slag on the performance of RPM. The solid particle is assumed to be spherical particles. Then, the void volume of paste ($V_{\nu}$) and the paste content with specific quality can be obtained. As conclusion, under Fuller's ideal grading curve, the amount of fly ash/slag mixture is higher than that with silica fume along due to it better filled the void within solid particle and obtains higher packing density.

Synthesis and Characterization of $TiO_2$ Ultrafine Powder by Chemical Vapor Deposition (화학 증착법에 의한 $TiO_2$ 초미분의 제조 및 입자 특성에 관한 연구)

  • 염선민;이성호;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 1995
  • TiO2 fine powders were synthesized using oxygenolysis and hydrolysis reaction of TiCl4 vapor in gas phase. The TiO2 powder synthesized showed morphological differences depending on reaction system as follows: TiCl4-O2 reaction system produced the monosized particles having polyhedral shape with well-defined crystal planes and the particles did not agglomerate into secondary particles. TiCl4-H2O reaction system, whereas, produced the spherical secondary particles which consisted of fine primary particles. Other powder characteristics such as particle size, impurity content and rutile content are also reported in this study.

  • PDF

Characteristics of Fluid Flow in a Solid Particle Circulating Fluidized Heat Exchanger (고체입자 순환유동층 열교환기의 유동특성)

  • Lee, B.C.;Ahn, S.W.;Kim, W.C.;Lee, Y.P.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.705-710
    • /
    • 2001
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than in the external flow, in addition, they were lower with the shapes of particles being closer to the spherical geometries.

  • PDF

Preparation of Smart Probiotic Solid Lipid Nanoparticles (SLN) for Target Controlled Nanofood

  • Kim, Dong-Myung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.5-10
    • /
    • 2007
  • Ultrasonication was employed to prepare solid lipid nanoparticles (SLN) for smart probiotic nanoparticles as a nanofood. The model probiotic material, lactocin from Lactobacillus plantarum (CBT-LP2), was incorporated into SLN. The CBT-LP2 loaded SLN (CBT-LP2-SLN) were spherical in the photograph of scanning electron microscope (SEM). The particle size measured by laser diffraction (LD) was found to be $97.3{\pm}8.2nm$. Zeta potential analyzer suggested the zeta potential of LP-SLN was $-29.36{\pm}3.68$ mV in distilled water. The entrapment efficiency (EE%) was determined with the sephadex gel chromatogram and high-performance liquid chromatogram (HPLC), and up to 90.59% of nanofood was incorporated. Stability evaluation showed relatively long-term stability with only slight particle growth (P>0.05) after storage at room temperature for 4 weeks. Therefore, ultrasonication is demonstrated to be a simple, available and effective method to prepare high quality SLN loaded probiotic material.

  • PDF

Preparation of Al2O3-ZrO2 Composite Powders by the Use of mulsions : II. Emulsion-Hot Kerosene Drying Method (에멀젼을 이용한 Al2O3-ZrO2 복합분체의 제조 : II. 에멀젼-가열석유 증발법)

  • 현상훈;백종규
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.284-292
    • /
    • 1988
  • Alumina-zirconia composite powders for the purpose of improving fracture toughness and thermal shock resistance of alumina were prepared by the emulsion-kerosene drying method. The average particle size of composite powders was less then 1 $\mu\textrm{m}$ and their shapes were spherical. It was shown that the average particle size of composite powders decreased with the concentration of metal-salt in solution and the amount of span 80 added when preparing emulsions. The structure of all zirconia in composite powders heat-treated at 1200$^{\circ}C$ was a tetragonal form at room temperature. This result implied that fine zirconia particles were homogeneously dispersed in the alumina matrix.

  • PDF

Preparation of $BaTiO_3$ Fine Powders by Spray Pyrolysis Using Ultrasonic Atomization Technique (초음파 분무 열분해법에 의한 $BaTiO_3$ 미분말의 제조)

  • 조형진;이종흔;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.11
    • /
    • pp.851-858
    • /
    • 1991
  • Spherical fine BaTiO3 powders with an average diameter of 0.3${\mu}{\textrm}{m}$ to 0.9${\mu}{\textrm}{m}$ are prepared at 100$0^{\circ}C$ by the ultrasonic spray pyrolysis of solutions containing Ba(NO3)2 and TiCl4. Experimental variables are adjusted to produce BaTiO3 powders and its effect on the phase, the size and the morphology of the particles are investigated by XRD, SEM, TEM. Each particle consists of small primary particles and has a hollow around its center. The dependence of particle diameters on the concentrations of source solutions indicates that metal salt precursors are dried to precipitate solid particles and decompose to form BaTiO3 phase without gas phase reactions.

  • PDF

Synthesis of Carbon-Supported Pt-Ru Catalysts using a Flame Spray Pyrolysis Method for Fuel Electrode of Low Temperature Fuel Cell (화염분무열분해 공정을 이용한 저온 연료전지 연료전극용 탄소담지 Pt-Ru 촉매의 제조)

  • Lee, Hyun-Min;Lee, Dong-Geun
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.69-74
    • /
    • 2012
  • This study describes how successfully a conventional flame aerosol synthesis was used to continuously synthesize Pt-Ru catalysts supported by carbon agglomerates. Nearly spherical catalysts produced in the flame were mainly composed of metallic Pt and Ru with the molar ratio of 1:1 and those sizes were controllable from ~1.5 nm to ~2.0 nm. Nevertheless, only Pt peaks were found from X-ray diffraction experiments, suggesting that amorphous-like Ru was well mixed in the crystalline Pt lattices. It was found from Cyclo-voltamograms and CO stripping experiments that the electrochemical properties of the catalysts are at least comparable to that of a conventional commercial sample.