• Title/Summary/Keyword: spherical caps

Search Result 5, Processing Time 0.017 seconds

Nonlinear dynamic buckling of laminated angle-ply composite spherical caps

  • Gupta, S.S.;Patel, B.P.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.463-476
    • /
    • 2003
  • This paper deals with nonlinear asymmetric dynamic buckling of clamped laminated angle-ply composite spherical shells under suddenly applied pressure loads. The formulation is based on first-order shear deformation theory and Lagrange's equation of motion. The nonlinearity due to finite deformation of the shell considering von Karman's assumptions is included in the formulation. The buckling loads are obtained through dynamic response history using Newmark's numerical integration scheme coupled with a Newton-Raphson iteration technique. An axisymmetric curved shell element is used to investigate the dynamic characteristics of the spherical caps. The pressure value beyond which the maximum average displacement response shows significant growth rate in the time history of the shell structure is considered as critical dynamic load. Detailed numerical results are presented to highlight the influence of ply-angle, shell geometric parameter and asymmetric mode on the critical load of spherical caps.

SPHERICAL CAPS IN A CONVEX CONE

  • Um, Taekwan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.601-603
    • /
    • 2013
  • We show that a compact embedded hypersurface with constant ratio of mean curvature functions in a convex cone $C{\subset}\mathbb{R}^{n+1}$ is part of a hypersphere if it has a point where all the principal curvatures are positive and if it is perpendicular to ${\partial}C$.

Vibrations and thermal stability of functionally graded spherical caps

  • Prakash, T.;Singh, M.K.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.447-461
    • /
    • 2006
  • Here, the axisymmetric free flexural vibrations and thermal stability behaviors of functionally graded spherical caps are investigated employing a three-noded axisymmetric curved shell element based on field consistency approach. The formulation is based on first-order shear deformation theory and it includes the in-plane and rotary inertia effects. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. The effective material properties are evaluated using homogenization method. A detailed numerical study is carried out to bring out the effects of shell geometries, power law index of functionally graded material and base radius-to-thickness on the vibrations and buckling characteristics of spherical shells.

Secondary buckling analysis of spherical caps

  • Kato, Shiro;Chiba, Yoshinao;Mutoh, Itaru
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.715-728
    • /
    • 1997
  • The aim of this paper is to investigate the secondary buckling behaviour and mode-coupling of spherical caps under uniformly external pressure. The analysis makes use of a rotational finite shell element on the basis of strain-displacement relations according to Koiter's shell theory (Small Finite Deflections). The post-buckling behaviours after a bifurcation point are analyzed precisely by considering multi-mode coupling between several higher order harmonic wave numbers: and on the way of post-buckling path the positive definiteness of incremental stiffness matrix of uncoupled modes is examined step by step. The secondary buckling point that has zero eigen-value of incremental stiffness matrix and the corresponding secondary mode are obtained, moreover, the secondary post-buckling path is traced.

Buckling Analysis of Axisymmetric Shells by Incremental Finite Element Mothod (증분형(增分形) 유한요소법(有限要素法)에 의한 축대칭(軸對稱) Shell구조(構造)의 좌굴해석(挫屈解析))

  • J.B.,Kim;C.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • This paper deals whth the buckling as well as postbuckling analysis of axisymmertric shells taking the initial deflection effects into account. Incremental equilibrium equations, based on the principle of virtual work, were derived by the finite element method, the successive step-by-step Newton-Raphson iterative technique was adopted. To define the transition pattern of postbuckling behavior from the prebuckling state more accurately, a simple solution method was developed, i.e. the critical load was calculated by the load extrapolation method with the determinant of tangent stiffness matrix and the equilibrium configuration in the immediate postbuckling stage was obtained by perturbation scheme and eigenvalue analysis. Degenerated isoparametric shell elements were used to analyse the axisymmetric shell of revolution. And by the method developed in this paper, the computer program applicable to the nonlinear analysis of both thin and moderately thick shells was constructed. To verify the capabilities and accuracies of the present solution method, the computed results were compared with the results of analytical solutions. These results coincided fairly well in both the small deflection and large deflection ranges. Various numerical analyses were done to show the effect of initial deflection and shape of shells on buckling load and postbuckling behavior. Futhermore, corrected directions of applied loads at every increment steps were used to determine the actual effects of large deflection in non-conservative load systems such as hydrostatic pressure load. The following conclusions can be obtained. (1) The method described in this paper was found to be both economic and effective in calculating buckling load and postbuckling behavior of shell structure. (2) Buckling and postbuckling behavior of spherical caps is critically dependent upon their geometric configuration, i.e. the shape of spherical cap and quantities of the initial deflection. (3) In the analysis of large deflection problems of shells by the incremental method, corrections of the applied load directions are needed at every incremental step to compensate the follower force effects.

  • PDF